Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Tech Captures Toxic Micro-Organisms

15.07.2004


Sophisticated technology developed to ensure clean air for astronauts onboard space stations is now used in hospitals to capture and destroy airborne fungi, bacteria, spores and viruses. It can also eliminate microorganisms causing SARS, ebola, smallpox, and tuberculosis as well as anthrax.



Most of the airborne micro-organisms around us do not present grave hazards to healthy people, however they can pose serious threats to those with reduced immune resistance. The space technology ’PlasmerTM’ now provides an innovative solution to guarantee clean air in several European hospitals.

PlasmerTM is a multistage system using strong electric fields and cold-plasma chambers to eliminate micro-organisms in the air. Using this space technology, the AirInSpace company with support from ESA’s Technology Transfer and Promotion Office (TTP) has developed a transportable and protective unit for use in hospitals and emergency scenarios, providing an easy deployable clean room.


"With the special Plasmer technology we have managed to develop an innovative solution to provide clean air by destroying more than 99.9% of micro-organisms, responding to the special needs of immune-compromised patients in hospitals," says Laurent Fullana, General Manager of AirInSpace.

"Our system ’ImmunairTM’ uses five PlasmerTM reactors to provide a clean-air ’tent’, free of infective germs around a patient’s bed. It is targeted primarily for immuno-haematology, oncology, reanimation and transplant hospital departments. We have produced a smaller version, ’Cool Plasmair’, with no ’tent’, for use across a wide range of hospital areas where cross infection is a concern."

Since early 2001 the system has been under test for a 12-month period in five hospitals. Dr Svetlana Challier, of the Necker Hospital in Paris, says, "ImmunairTM makes it possible to reduce significantly the bacteria level in the air."

Another user of the system, Professor François Demeocq, CHU/Hôtel-Dieu in Clermont-Ferrand, reports, "The biological protection with the ImmunairTM system is very satisfactory and responds well to the needs required for children with strongly reduced immune defence following chemotherapy treatments. It could also be used to provide the protection after transplants."

Demeocq adds, "For the children and their parents, this device is more convenient in everyday life and allows the emotional contact which is essential for these children who are isolated for a very long time."

The PlasmerTM technology for the biological decontamination of air onboard manned spacecraft was invented in the early 90s by a group of Russian scientists. In 1997 the Russian space station MIR was equipped with PlasmerTM reactors successfully protecting cosmonauts and electronic equipment from bacteria, viruses and fungal contamination.

In April 2001, PlasmerTM reactors were installed to clean the air from micro-organisms in the Russian segments on the International Space Station. Now the PlasmerTM space technology has moved down to Earth to protect immune-compromised patients in hospitals.

Pierre Brisson | alfa
Further information:
http://www.esa.int

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>