Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene expression patterns may help predict risk and progression of prostate cancer

15.07.2004


According to a study published in the July 15 issue of the Journal of Clinical Oncology, genes expressed in benign tissue adjacent to prostate cancer tissue are much more similar to those expressed in prostate cancer tissue than previously thought. This finding, the first of its kind, may help predict populations both at risk for prostate cancer and for disease progression based on gene expression patterns, say researchers at the University of Pittsburgh.



"It is not clear what molecular events are responsible for the progression of prostate cancer to a lethal form of the disease," said Jian-Hua Luo, M.D., Ph.D., senior author of the study and assistant professor, department of pathology, University of Pittsburgh School of Medicine. "But by exploring the biology of prostate cancer through the identification of genes and patterns of gene expression, we can more precisely understand what genetic changes cause the disease to progress and develop therapeutic targets to prevent its progression at an earlier stage."

In the study, Dr. Luo, also director of the gene array laboratory at the University of Pittsburgh, and colleagues used high throughput quantitative analysis to genetically profile prostate cancer tissue and noncancerous prostate tissue samples. They analyzed 152 human tissue samples including 66 samples of prostate cancer tissue, 60 samples of benign prostate tissue adjacent to the tumor, 23 samples of donor prostate tissue free of genitourinary disease and three prostate cancer cell lines. Through the analysis, the researchers identified a set of 671 genes whose expression levels were significantly altered in prostate cancer tissue compared to disease-free tissue and found that patterns of gene expression in benign adjacent prostate tissue were much more similar to prostate cancer tissue than to disease-free tissue.


According to Dr. Luo, the gene expression patterns of benign adjacent tissue were significantly overlapped with those of prostate cancer and distinctly different than the disease-free tissue. Furthermore, the adjacent tissue was so genetically altered that it resembled a cancer field effect, undergoing genetic changes similar to prostate cancer, even though it was morphologically benign tissue.

"It appears that genetic alterations in the prostate occur in parts of the gland that otherwise look benign," said Joel Nelson, M.D., professor and chairman, department of urology, University of Pittsburgh and co-author of the study. "We have long suspected a so-called field change in the prostate gland containing cancer, meaning some alteration has occurred throughout the prostate tissue. This study lends support for such a hypothesis."

The researchers also created a gene model using GeneSpringTM software to predict the aggressiveness of the disease and found that the expression profile model was more than 80 percent accurate in predicting the aggressiveness of the disease.

"Since only a fraction of prostate cancers are metastatic, identifying variables that predict the behavior of a prostate cancer tumor based on gene expression patterns should prove important in clinical management of the disease," said Dr. Luo. "The results of this study are a first step in that direction."

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>