Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients’ cells from tumors, the immune system merged for customized cancer therapy

15.07.2004


One of the strongest natural allies that cancer patients can tap to help fight tumor growth and metastasis may well be their own immune systems, and scientists affiliated with the Harvard University Medical School have devised ways of bolstering patients’ immune response against kidney and breast cancer.



In a paper published in the July 15 issue of the journal Clinical Cancer Research, the Harvard research team documented tumor regression in two breast cancer patients, and stabilization and containment of tumor growth in late stage breast and kidney patients through application of customized vaccinations made from the patients’ own tumor and immune system cells.

By fusing patients’ tumor cells with their immune system dendritic cells, researchers associated with the laboratory of Donald Kufe, M.D., professor of medicine at Dana-Farber Cancer Institute and Harvard Medical School, created customized antigen-presenting immune cells that train T cells to hunt, recognize and destroy the patients’ tumor cells.


"We aimed to develop a novel vaccine that took whole tumor cells with their complete array of tumor-specific antigens and combine them with the potent immune stimulating machinery of the dendritic cells," said David Avigan, M.D., director of bone marrow transplantation at Beth Israel Deaconess Medical Center, and the lead author of the Clinical Cancer Research article.

The immune system develops T cells, which are white blood cells, to recognize foreign proteins, cells, and other matter that causes disease or infection. Tumor cells produce proteins, carbohydrates and other molecules that are different than the healthy cells that are normally found in the human body. The immune system can recognize cancer-related molecules, but cancer cells often are difficult for the immune system to detect. Conversely, dendritic cells are potent immune stimulating cells capable of generating the type of T Cells that attack and kill cancer cells.

In the past, immunologists have attempted to define cancer specific markers and develop vaccinations with those molecules, but most tumors don’t have well-defined antigens that can be isolated or have proved useful for vaccination development. Previous research approaches often were aimed at producing T cells that would recognize a defined cancer marker molecule, but the immune response to those vaccinations often fell short of expectations.

The Harvard team aimed at making a hybrid cell composed of both the cancer cells and dendritic cells taken from patients for use exclusively in the individual from whom the cells were obtained.

"This approach increased the number of antigens that immune system cells can recognize," Avigan said. "And for the individual patients, those antigens are specific to their own tumor cells."

The challenges of the trial included constructing the hybrid cells and evaluating the vaccinations performance in the donor patients. The dendritic cells were obtained from the patients’ blood. But harvesting cells from the tumors proved difficult. Cell numbers from individual patients were sometimes too low for successful generation of the hybrid tumor/dendritic cell fusion.

The study group included 23 patients--10 people with breast cancer and 13 with kidney cancer--from whom the researchers were able to collect enough cells to construct fusion cells in the laboratory. The effect of the vaccine on the patient’s immune system was measured by the number of circulating T cells that reacted with the patient-derived tumor cells before and after vaccination. Vaccination induced a doubling of tumor reactive T cells in about half the 18 patients in which this was measured. Ten patients doubled the percentage of CD4+ T cells that produced interferon gamma, a cytokine integral to the immune response. Seven patients doubled the percentage of CD8+ T cells that produced the interferon in response to exposure to the tumor.

"The increase of these interferon-producing T cells indicated that the fusion cell vaccination was promoting a heightened response by the immune system," Avigan said. "That response was targeted at antigens on the tumor cells."

The vaccine was well tolerated with only minimal toxicity observed. While a potential concern with vaccine therapy is the induction of an immune response against normal tissues of the body, no evidence of significant autoimmunity was seen.

A third of the study participants responded positively to the customized therapy. Among the breast cancer patient to be immunized, one woman responded to the trial vaccination with 80 percent regression of her chest wall tumor mass within a month. After four months, the tumor had regressed by 90 percent. She remained stable with no evidence of progression during the following two years. A second patient responded with regression of half a tumor that had spread to her adrenal gland, and almost half a pulmonary nodule as well. That individual showed resumed disease progression after a half year. A third breast cancer patient, and five kidney cancer patients, remained stable for three to nine months after completion of the vaccination treatments.

"The results from this patient group, while preliminary, hold promise that fusion cell technology may emerge as an effective immunotherapeutic strategy allowing patients to use their own immune system to fight their cancer," Avigan said.

While the results were not universal to all the study participants, Avigan said that that further development of the vaccination, and application on patients with less advanced disease and whose immune systems were less severely weakened, may increase the positive results observed in the Harvard group’s initial Phase I trail.

Kufe’s and Avigan’s colleagues in the study were comprised of researchers from two Harvard Medical School teaching affiliates, the Dana-Farber Cancer Institute and Beth Israel Deaconess Medical Center.

Russell Vanderboom | EurekAlert!
Further information:
http://www.aacr.org

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>