Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method enables researchers to make human SARS antibodies quickly

12.07.2004


Human antibodies that thwart the SARS virus in mice can be mass-produced quickly using a new laboratory technique developed by an international research team collaborating with the National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health. The new technique could become an important tool for developing a cocktail of SARS-specific antibodies that might help protect people recently exposed to the SARS virus or at high risk of exposure. The technique could also make possible the development of a similar approach to prevent or treat other illnesses, such as HIV/AIDS and hepatitis C.



The report describing these findings appears in the July 11, 2004, online issue of Nature Medicine.

"While much has been accomplished in our quest for a vaccine against SARS, a vaccine may provide little benefit to someone already infected," says Anthony S. Fauci, M.D., director of NIAID. "Human SARS antibodies could offer a double benefit: they could be used as a potent frontline defense for health care workers and others at high risk of exposure and as an effective treatment for those individuals newly exposed to the virus." Currently, there is no specific effective treatment for SARS.


SARS is caused by a coronavirus, a family of viruses named for their spiky, crown-like appearance. Highly contagious, SARS typically begins with flu-like symptoms, such as fever, headache and muscle aches, and generally progresses to pneumonia. In the 2003 global outbreak, more than 8,000 people were infected with SARS, 9 percent of whom died. In April 2004, a small outbreak in China is suspected to have begun as a result of negligent laboratory practices.

In the current study, Elisabetta Traggiai, Ph.D., and Antonio Lanzavecchia, M.D., from the Institute for Research in Biomedicine, Bellinzona, Switzerland, together with an international research team, generated human antibodies against SARS far more quickly and efficiently than with current methods. Moreover, collaborators Kanta Subbarao, M.D., and Brian Murphy, M.D., both in NIAID’s Laboratory of Infectious Diseases, demonstrated for the first time that these human SARS antibodies, when injected into mice, effectively prevent the virus from multiplying in the respiratory system.

"The antibodies from people who have recovered from SARS may target different parts of the virus than antibodies generated by other animals, such as mice," says Dr. Subbarao. "For this reason, human antibodies--antibodies from recovered patients that may have a proven effectiveness in fighting the disease--are considered most desirable for a possible serotherapy against SARS."

Antibodies are made by special immune system cells called B cells that, to do their job, must first be switched on. In nature, this occurs when the body encounters a new or repeat foreign "invader." In the laboratory, researchers conventionally accomplish this by exposing the B cells to Epstein Barr virus (EBV), a herpes virus that infects B cells, which in turn activates them. Unfortunately, this process is very inefficient, and only one or two B cells out of one hundred are activated this way.

Dr. Lanzavecchia and his research team added a new ingredient to the mix that significantly boosts efficiency. Beginning with B cells from a recovered SARS patient, the researchers added a short stretch of synthetic DNA that mimics DNA found in bacteria and viruses. From 30 to 100 percent of the B cells--in this case called "memory" B cells because they had been exposed to the SARS virus before--were switched back on, enabling them to churn out SARS antibodies at a fast pace. In only a few weeks, the researchers screened hundreds of antibodies and obtained 35 that could neutralize the SARS virus in the laboratory. All the neutralizing antibodies targeted a key SARS protein, the spike protein, found on the virus surface.

Furthermore, when Drs. Subbarao and Murphy injected one of the neutralizing antibodies into mice, they found that these antibodies effectively thwarted the SARS virus from multiplying in the lower respiratory tract, which includes the lungs, and, to a lesser extent, in the upper respiratory tract, which includes the nasal cavity. According to Dr. Subbarao, these results are very promising because replication of SARS in the lungs of humans can result in pneumonia.

A primary benefit of the new activation technique is that it generates a large pool of prospective antibodies from which to choose, so only the most effective SARS fighters can be chosen for use in a possible immune serum. Because viruses can mutate, however, more than one antibody will most likely be needed to achieve the optimal protection or treatment, the researchers contend.

The researchers’ next goal is to find additional antibodies against the SARS virus, focusing on those that attach most readily to the virus, are most potent against the virus, and can attach to more than one site on the spike protein. Before the antibodies might be made available for clinical use, researchers need to test them for their effectiveness in other laboratory animals, such as non-human primates, as well as in human clinical trials.

Jennifer Wenger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>