Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI analysis shows brain connections that develop last decline first

12.07.2004


Technology opens door for study of cause, treatment of Alzheimer’s

UCLA neuroscientists using a new MRI analysis technique to examine myelin sheaths that insulate the brain’s wiring report that as people age, neural connections that develop last degenerate first. The computer-based analysis method is unique in its ability to examine specific brain structures in living people at millimeter resolution.

Published online by the Neurobiology of Aging earlier this year and scheduled to appear in the August 2004 print edition of the peer-reviewed journal, the study offers new insights into the role of myelin in brain aging and its contribution to the onset of Alzheimer’s disease. In addition, the success of the MRI analysis technique opens new opportunities for studying the impact of lifestyle on brain aging and for developing medications that could slow aging or prevent Alzheimer’s disease.



"The study increases our understanding of the role of myelin in brain development and degeneration, and demonstrates the usefulness of this MRI method for examining the single most powerful risk for Alzheimer’s disease by far - age," said Dr. George Bartzokis, the study’s lead investigator and visiting professor of neurology at the David Geffen School of Medicine at UCLA. He also is director of the UCLA Memory Disorders and Alzheimer’s Disease Clinic and clinical core director of the UCLA Alzheimer’s Disease Research Center.
Myelin is a sheet of lipid, or fat, with very high cholesterol content - the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain grow and eventually promote the production of a toxic protein that together with other toxins attacks the brain. This toxic environment disrupts brain connections and eventually also leads to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer’s patients.

"The brain is not a computer, it is much more like the Internet," Bartzokis said. "The speed, quality and bandwidth of the connections determine its ability to process information, and all these depend in large part on the insulation that coats the brain’s connecting wires.
"The results of our study show that in older age, the myelin insulation breaks down, resulting in a decline in the speed and efficiency of our Internet. Myelin and the cells that produce it are the most vulnerable component of our brain - the human brain’s Achilles’ heel," he said. "This safe, non-invasive technology can assess the development and degeneration of the brain’s insulation in specific regions. Now that we can measure how brain aging proceeds in vulnerable regions, we can measure what treatments will slow aging down and thus begin in earnest to look at preventing Alzheimer’s disease."

The UCLA research team examined the deterioration of myelin in the brain’s splenium and genu regions of the corpus callosum, which connects the two sides of the brain. Neural connections important to vision develop early in life in the splenium, while connections important to decision making, memory, impulse control and other higher functions develop later in the genu.

The team found that the brain connections deteriorated three times as fast in the genu compared to the splenium. The study also notes that myelin deterioration is far greater throughout the brain of patients with Alzheimer’s disease than in healthy older adults. The late myelinating regions are much more vulnerable and may be why the highest levels of reasoning and new memories are the first to go when one develops Alzheimer’s disease, while movement and vision are unaffected until very late in the disease process.

These findings support the model of Alzheimer’s as a disease driven by myelin breakdown. Bartzokis detailed this model in an article published in the January 2004 edition of the Neurobiology of Aging along with six independent commentaries and his response.

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>