Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI analysis shows brain connections that develop last decline first

12.07.2004


Technology opens door for study of cause, treatment of Alzheimer’s

UCLA neuroscientists using a new MRI analysis technique to examine myelin sheaths that insulate the brain’s wiring report that as people age, neural connections that develop last degenerate first. The computer-based analysis method is unique in its ability to examine specific brain structures in living people at millimeter resolution.

Published online by the Neurobiology of Aging earlier this year and scheduled to appear in the August 2004 print edition of the peer-reviewed journal, the study offers new insights into the role of myelin in brain aging and its contribution to the onset of Alzheimer’s disease. In addition, the success of the MRI analysis technique opens new opportunities for studying the impact of lifestyle on brain aging and for developing medications that could slow aging or prevent Alzheimer’s disease.



"The study increases our understanding of the role of myelin in brain development and degeneration, and demonstrates the usefulness of this MRI method for examining the single most powerful risk for Alzheimer’s disease by far - age," said Dr. George Bartzokis, the study’s lead investigator and visiting professor of neurology at the David Geffen School of Medicine at UCLA. He also is director of the UCLA Memory Disorders and Alzheimer’s Disease Clinic and clinical core director of the UCLA Alzheimer’s Disease Research Center.
Myelin is a sheet of lipid, or fat, with very high cholesterol content - the highest of any brain tissue. The high cholesterol content allows myelin to wrap tightly around axons, speeding messages through the brain by insulating these neural "wire" connections.

As the brain continues to develop in adulthood and as myelin is produced in greater and greater quantities, cholesterol levels in the brain grow and eventually promote the production of a toxic protein that together with other toxins attacks the brain. This toxic environment disrupts brain connections and eventually also leads to the brain/mind-destroying plaques and tangles visible years later in the cortex of Alzheimer’s patients.

"The brain is not a computer, it is much more like the Internet," Bartzokis said. "The speed, quality and bandwidth of the connections determine its ability to process information, and all these depend in large part on the insulation that coats the brain’s connecting wires.
"The results of our study show that in older age, the myelin insulation breaks down, resulting in a decline in the speed and efficiency of our Internet. Myelin and the cells that produce it are the most vulnerable component of our brain - the human brain’s Achilles’ heel," he said. "This safe, non-invasive technology can assess the development and degeneration of the brain’s insulation in specific regions. Now that we can measure how brain aging proceeds in vulnerable regions, we can measure what treatments will slow aging down and thus begin in earnest to look at preventing Alzheimer’s disease."

The UCLA research team examined the deterioration of myelin in the brain’s splenium and genu regions of the corpus callosum, which connects the two sides of the brain. Neural connections important to vision develop early in life in the splenium, while connections important to decision making, memory, impulse control and other higher functions develop later in the genu.

The team found that the brain connections deteriorated three times as fast in the genu compared to the splenium. The study also notes that myelin deterioration is far greater throughout the brain of patients with Alzheimer’s disease than in healthy older adults. The late myelinating regions are much more vulnerable and may be why the highest levels of reasoning and new memories are the first to go when one develops Alzheimer’s disease, while movement and vision are unaffected until very late in the disease process.

These findings support the model of Alzheimer’s as a disease driven by myelin breakdown. Bartzokis detailed this model in an article published in the January 2004 edition of the Neurobiology of Aging along with six independent commentaries and his response.

Dan Page | EurekAlert!
Further information:
http://www.ucla.edu
http://neurology.medsch.ucla.edu
http://www.adc.ucla.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>