Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No abdominal incisions - or scars - with new surgery tools and technique

07.07.2004


Clinical trials awaited for procedure that is less invasive than laparoscopy

Surgeries performed with specialized medical devices requiring only small incisions, called laparoscopic surgery, have many advantages over traditional open surgery, including less pain, fewer complications and quicker recoveries. Now, scientists at Johns Hopkins have created a new surgical technique that in extensive animal studies is safe and may improve even further the benefit of minimally invasive surgery by leaving the abdominal wall intact.

The new procedure, called flexible transgastric peritoneoscopy, or FTP, is performed by inserting a flexible mini-telescope, called an endoscope, and related surgical tools, through the mouth and into the stomach. After puncturing the stomach wall and the thin membrane surrounding the stomach -- called the peritoneum, which also lines the inside of the abdominal and pelvic cavities -- the doctors can see and repair any of the abdominal organs, such as the intestines, liver, pancreas, gallbladder and uterus.



"FTP may dramatically change the way we practice surgery," said Anthony Kalloo, M.D., associate professor of medicine and director of gastrointestinal endoscopy at Johns Hopkins and lead author of a report describing the new procedure in the July issue of Gastrointestinal Endoscopy. "The technique is less invasive than even laparoscopy because we don’t have to cut through the skin and muscle of the abdomen, and it may prove a viable alternate to existing surgical procedures."

For their study, the investigators relied on standard endoscopic equipment already in use, but they are awaiting development of even better, specialized equipment before they begin clinical trials on humans, sometime within the next year. The researchers, including an international think-tank group of gastroenterologists from five universities called the Apollo Group, have already designed an endoscopic sewing machine to close incisions.

The researchers first evaluated the technical feasibility and safety of the procedure by performing liver biopsy on pigs under general anesthesia. After washing the stomach with an antibacterial solution to prevent infection, a small incision was made to allow access to the peritoneal cavity. The cavity was then filled with air to increase the visibility of the organs, biopsy samples were taken from the liver, and the incision was sealed with clips. The pigs were monitored for 14 days following the procedure and showed no signs of serious infection or other complications, and the surgical site was completely healed.

"Because the lining of the stomach repairs faster than skin, recovery times should be reduced," says Kalloo. Ironically perhaps, while a surgical injury to the lining of the stomach or intestines is often considered a serious medical condition because of the risk of infection, the results of this study show that careful preparation and monitoring can turn a potentially fatal situation into a better and safe surgical technique, adds Kalloo.

In a second study, the researchers evaluated the safety of the new surgery for blocking the Fallopian tubes, or tubal ligation -- an immediately effective, permanent form of female birth control that works by preventing an egg from traveling from the ovary to the uterus. All five pigs that underwent the 20-minute procedure recovered well without ill effects or any abdominal scars, and the fallopian tubes remained completely blocked.

Other investigators in this research are Sergey Kantsevoy, Sanjay Jagannath, Cheryl Vaughn, Diana Scorpio, Carolyn Magee, Laurie Pipitone, Vikesh Singh, Hideaki Niiyama and Susan Hill. In addition to Kalloo, members of the Apollo group are: Sydney Chung, Chinese University of Hong Kong; Christopher Gostout, Mayo Clinic; Peter Cotton and Robert Hawes, Medical University of South Carolina; Jay Pasricha, University of Texas Medical Branch Galveston; and Sergey Kantsevoy of Johns Hopkins.

Trent Stockton | EurekAlert!
Further information:
http://www.hopkinsmedicine.org
http://hopkins-gi.org/pages/latin/templates/

More articles from Health and Medicine:

nachricht UC San Diego cancer scientists identify new drug target for multiple tumor types
12.07.2019 | University of California - San Diego

nachricht Bacteria engineered as Trojan horse for cancer immunotherapy
04.07.2019 | Columbia University School of Engineering and Applied Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Tracking down climate change with radar eyes

17.07.2019 | Earth Sciences

Researchers build transistor-like gate for quantum information processing -- with qudits

17.07.2019 | Information Technology

A new material for the battery of the future, made in UCLouvain

17.07.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>