Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Method For Direct Treatment Of Intestinal Illnesses

29.06.2004


Wins Kaye Prize for Hebrew University PH.D. Student

A method for applying drugs directly to mucousal surfaces in the intestinal system has won a coveted prize for a graduate student at the Hebrew University of Jerusalem. The method has potential for providing better treatment for such diseases as ulcerative colitis and colon cancer.

The student is Tareq Jubeh, 30, of Jerusalem, who is working on his Ph.D. in the Department of Pharmaceutics at the Hebrew University School of Pharmacy under the supervision of Prof. Abraham Rubinstein and Prof. Yechezkel Barenholz.



Jubeh, married and the father of one child, was born in Jerusalem. He received his bachelor degree in pharmacy at the Applied Science University in Amman, Jordan, graduating first in his class in pharmaceutical sciences.

He received one of the Kaye Innovation Awards during the 67th meeting of the Hebrew University Board of Governors in June. The Kaye Awards have been given annually since 1993. Isaac Kaye of England, a prominent industrialist in the pharmaceutical industry, established the awards to encourage faculty, staff, and students of the Hebrew University to develop innovative methods and inventions with good commercial potential which will benefit the university and society.

The Kaye Award is the latest of a number of prizes won by Jubeh since coming to the Hebrew University School of Pharmacy in 1998, where he has earned a master’s degree and now serves as a teaching assistant. He previously won two awards for his work in teaching and supervision in pharmaceutics and industrial pharmacy courses, and earlier this year was awarded a prize for excellence in research carried out by Ph.D. students.

The technology developed by Jubeh is based on a novel liposomal delivery system which involves direct introduction via the rectum of a drug-containing liposomal suspension into the colon. Liposomes are microscopic or submicrosopic, sac-like membranic structures into which drugs can be encapsulated. These liposomal formulations have been shown to be effective in delivering drugs to the mucousal (interior) surfaces of the colon and small intestine.

A major element in this success was Jubeh’s discovery that the intestinal surface, which normally carries a negative electrical charge, changes to positive when there is an inflammation. Jubeh, therefore, designed liposomes that carry a counter (negative) charge, thereby creating electrostatic adhesion to the inflamed area and promoting healing. Further, he designed liposomal formulations with the ability to remain for predetermined, prolonged periods of times on the intestinal surfaces.

Jubeh is now planning to work towards perfecting an orally induced version of his drug-bearing liposomes in order to produce a non-invasive application.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>