Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three dimensional ecography

25.06.2004


Three-dimensional ecography is a novel advance in the application of ultrasounds in the diagnosis of a number of pathologies. It involves a system of probes that register images in multiple layers. Then the information is transferred to a computer within the ecograph itself, where the three-dimensional reconstruction is carried out automatically. Advances in information technology have so perfected the data processing that this reconstruction can be obtained in real time.




This new diagnostic technique has an average duration of 15 minutes, although actually obtaining the images only takes a few seconds and has a number of advantages over the conventional bidimensional ecography, such as studying the possibility of studying all layers of the space, showing images in 3-D and obtaining data which is more reproducible.

Application in obstetrics


Three-dimensional ecography is considered a diagnostic technology a complementary to the conventional or bidimensional one which turns out to be highly useful for foetal study. It provides high-quality three-dimensional images of the foetus, to such an extent that parents can follow with precision the features and movements of their child in different positions and from different perspectives. According to some specialists, this enhancement of the image may bring greater bonding between parents and child.

Another application of 3-D ecography in the field of obstetrics is the detection of various foetal anomalies. More specifically, it provides additional information for the diagnosis of lesions of the face, the limbs and the vertebral column, and its clinical use in cardiac problems is being studied. This technique does not diagnose more anomalies than conventional ecography but rather establishes the degree of lesion with more certainty in order that the specialist can make an early prognosis of the most suitable form of therapy.

The University Hospital School has the most advanced equipment available on the market today, providing three-dimensional images of the foetus inside the uterus and with its movements. What we have here is 4th dimensional ecography, the main contribution of which being the study of intrauterine foetal behaviour. With this technique foetal movements will be able to be seen and foetal reactions to different stimuli, without using indirect methods such as the checking of foetal cardiac frequency.

Application in gynaecology

The studies carried out in the Department of Gynaecology and Obstetrics at the University Hospital School have confirmed that, with this technique, uterine malformations are diagnosed with more precision than with traditional ecography. Specifically, it modifies the diagnosis in 50% of the cases. i.e. it detects lesions that have not been diagnosed with conventional ecography and can also change the diagnosis from one anomaly to another. These lesions can give rise to repetitive abortions, difficulty in becoming pregnant or low birth weight births, conditions for which a proper diagnosis is fundamental in order to indicate appropriate treatment and in time. Another gynaecological anomaly which benefits from this imaging technique is with submucous miomas, treatment for which requires hysteroscopic resection. Three-dimensional ecography defines with more exactitude which cases are more suitable for treatment and guarantees post-operational results.

Apart from benign lesions, researchers at the University Hospital School are particularly interested in the value of three-dimensional ecography to the study of tumorous neoangiogenesis. Our preliminary data show that, with this technique, the degree of vascularisation of cancer of the neck of the uterus and of the endometrial tissue as well as their correlation with prognostic factors for the tumour, can be observed in an objective manner. It, in effect, involves information that can help to modify the treatment.

Garazi Andonegi | Basque research
Further information:
http://www.unav.es/cun

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>