Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research discovery identifies new strategy against diabetes

16.06.2004


UCSF scientists have identified a protein on T cells of the immune system that triggers type 1 diabetes in mice when it interacts with another protein in the pancreas. They have shown that blocking the interaction prevents development of diabetes without weakening normal immune defenses or causing measurable side effects. The success provides a promising strategy against human type 1 diabetes, since the T cell protein has a counterpart in the human immune system, the scientists say.



The research is being published online June 15 by the journal Immunity.

The T cell protein, known as NKG2D, is a receptor on the surface of CD8+ T lymphocytes. The second protein, called RAE-1, has been found on cells infected by bacteria or viruses where it binds to NKG2D, alerting CD8+ T cells and other immune system molecules to attack and eliminate the pathogen.


T cells normally attack and destroy invading pathogens, but in type 1 diabetes, they mistakenly destroy the body’s insulin-producing islet cells.

"We knew that RAE-1 and its immune receptor were involved in anti-pathogen reactions," said Lewis Lanier, PhD, UCSF professor of microbiology and immunology and one of the paper’s senior authors. "The surprising finding is that RAE-1 is present in the pancreas of mice with autoimmune diabetes and if we prevent RAE-1 from binding its receptor on immune cells it can have a profound effect on autoimmunity. And treatment causes no observable side effects."

The researchers showed that treating the mice with an antibody that blocks the interaction of RAE-1 with the NKG2D receptor is completely effective against development of type 1 diabetes, Lanier said.

"You don’t need a calculator to tell the treatment group from the placebo group. It’s 100 percent effective," he said.

In addition to this newly discovered pathway, UCSF scientists have developed other strategies to block autoimmune disease by selectively interfering with receptors present on the surface of T cells. Jeffrey Bluestone, PhD, director of the UCSF Diabetes Center and a senior author with Lanier on the new paper, developed genetically engineered antibodies against CD3, another key T cell receptor that is required to trigger an autoimmune attack. The strategy has helped arrest early stages of human type 1 diabetes and rejection of islet cell transplantations in clinical trials. The treatment produces only minor side effects.

"The aim of selectively blocking molecules of the immune system is to prevent autoimmune disease without destroying all immune defenses -- and with a minimum of side effects, " Bluestone said. "Blocking the NKG2D receptor is even more selective than the anti-CD3 approach. What’s exciting about this finding is that if antibodies against this pathway can be developed into a treatment for human autoimmune disease, it would represent a very specific therapy targeting only a very small population of immune cells most involved in the disease."

The scientists studied diabetes development in "non-obese diabetic" (NOD) mice, considered the gold standard for type 1 diabetes research because disease progression in the mice mirrors the process in humans. In these mice, CD8+ T cells invade the pancreas when the mice are three weeks old, and diabetes develops 10 to 20 weeks later.

The team found that T cells invading the pancreas of the diabetic NOD mice expressed NKG2D and that insulin-producing islet cells in the pancreas produced the RAE-1 protein, promoting T cells to attack the islet cells. Normal, healthy mice did not produce RAE-1 in the pancreas. Treatment with the antibody that blocks RAE-1 from its receptor prevented development of diabetes in the NOD mice, the researchers reported.

The UCSF scientists expect that development of a "humanized" antibody to human NKG2D may provide an effective type 1 diabetes treatment. Other research has recently shown that the NKG2D on T cells may be involved in rheumatoid arthritis, so blocking NKG2D signaling may prove a useful strategy against a number of autoimmune diseases, the scientists conclude.


Lead author on the study is Kouetsu Ogasawara, PhD, a post-doctoral scientist in Lanier’s lab. Co-authors are Jessica A. Hamerman, PhD, and Lauren R. Ehrlich, PhD, postdoctoral fellows in Lanier’s lab; Helene Bour-Jordan, PhD, in the UCSF Diabetes Center; and Pere Santamaria, MD, PhD, professor of microbiology and infectious diseases at the Julia McFarlane Diabetes Research Centre, University of Calgary.

Support for the research was provided the National Institutes of Health, the Juvenile Diabetes Research Foundation and others.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>