Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research discovery identifies new strategy against diabetes

16.06.2004


UCSF scientists have identified a protein on T cells of the immune system that triggers type 1 diabetes in mice when it interacts with another protein in the pancreas. They have shown that blocking the interaction prevents development of diabetes without weakening normal immune defenses or causing measurable side effects. The success provides a promising strategy against human type 1 diabetes, since the T cell protein has a counterpart in the human immune system, the scientists say.



The research is being published online June 15 by the journal Immunity.

The T cell protein, known as NKG2D, is a receptor on the surface of CD8+ T lymphocytes. The second protein, called RAE-1, has been found on cells infected by bacteria or viruses where it binds to NKG2D, alerting CD8+ T cells and other immune system molecules to attack and eliminate the pathogen.


T cells normally attack and destroy invading pathogens, but in type 1 diabetes, they mistakenly destroy the body’s insulin-producing islet cells.

"We knew that RAE-1 and its immune receptor were involved in anti-pathogen reactions," said Lewis Lanier, PhD, UCSF professor of microbiology and immunology and one of the paper’s senior authors. "The surprising finding is that RAE-1 is present in the pancreas of mice with autoimmune diabetes and if we prevent RAE-1 from binding its receptor on immune cells it can have a profound effect on autoimmunity. And treatment causes no observable side effects."

The researchers showed that treating the mice with an antibody that blocks the interaction of RAE-1 with the NKG2D receptor is completely effective against development of type 1 diabetes, Lanier said.

"You don’t need a calculator to tell the treatment group from the placebo group. It’s 100 percent effective," he said.

In addition to this newly discovered pathway, UCSF scientists have developed other strategies to block autoimmune disease by selectively interfering with receptors present on the surface of T cells. Jeffrey Bluestone, PhD, director of the UCSF Diabetes Center and a senior author with Lanier on the new paper, developed genetically engineered antibodies against CD3, another key T cell receptor that is required to trigger an autoimmune attack. The strategy has helped arrest early stages of human type 1 diabetes and rejection of islet cell transplantations in clinical trials. The treatment produces only minor side effects.

"The aim of selectively blocking molecules of the immune system is to prevent autoimmune disease without destroying all immune defenses -- and with a minimum of side effects, " Bluestone said. "Blocking the NKG2D receptor is even more selective than the anti-CD3 approach. What’s exciting about this finding is that if antibodies against this pathway can be developed into a treatment for human autoimmune disease, it would represent a very specific therapy targeting only a very small population of immune cells most involved in the disease."

The scientists studied diabetes development in "non-obese diabetic" (NOD) mice, considered the gold standard for type 1 diabetes research because disease progression in the mice mirrors the process in humans. In these mice, CD8+ T cells invade the pancreas when the mice are three weeks old, and diabetes develops 10 to 20 weeks later.

The team found that T cells invading the pancreas of the diabetic NOD mice expressed NKG2D and that insulin-producing islet cells in the pancreas produced the RAE-1 protein, promoting T cells to attack the islet cells. Normal, healthy mice did not produce RAE-1 in the pancreas. Treatment with the antibody that blocks RAE-1 from its receptor prevented development of diabetes in the NOD mice, the researchers reported.

The UCSF scientists expect that development of a "humanized" antibody to human NKG2D may provide an effective type 1 diabetes treatment. Other research has recently shown that the NKG2D on T cells may be involved in rheumatoid arthritis, so blocking NKG2D signaling may prove a useful strategy against a number of autoimmune diseases, the scientists conclude.


Lead author on the study is Kouetsu Ogasawara, PhD, a post-doctoral scientist in Lanier’s lab. Co-authors are Jessica A. Hamerman, PhD, and Lauren R. Ehrlich, PhD, postdoctoral fellows in Lanier’s lab; Helene Bour-Jordan, PhD, in the UCSF Diabetes Center; and Pere Santamaria, MD, PhD, professor of microbiology and infectious diseases at the Julia McFarlane Diabetes Research Centre, University of Calgary.

Support for the research was provided the National Institutes of Health, the Juvenile Diabetes Research Foundation and others.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>