Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study could aid vaccine designers

28.05.2004


Investigators from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have conducted studies in mice to gain a new picture of how the immune system’s "killer" T cells are prompted to destroy infected cells. Their insights provide a blueprint for rational design of vaccines that induce desired T-cell responses.



The findings are published in this week’s Science. "If we are correct, what we’ve found will put rational vaccine design on a firmer footing," says Jonathan Yewdell, M.D., Ph.D., who led the NIAID team.

T cells belong to the cellular arm of the immune system’s two-pronged defense mechanism against foreign invaders--the other arm features blood-borne antibodies. Historically, vaccines aimed to stimulate antibody production in a bid to prevent specific diseases. More recently, scientists have begun to manipulate T cells to create vaccines effective against pathogens that antibodies alone cannot control. Such T-cell-inducing vaccines are being tested against infectious diseases such as HIV/AIDS and hepatitis and are being studied as treatments for certain cancers.


Once alerted to the presence of infected cells, resting T cells are "awakened" and begin to multiply rapidly. Then they zero in on and destroy infected cells while sparing uninfected ones. Rousing slumbering T cells is the job of dendritic cells, the sentinels of the immune system. Dendritic cells activate the T cells by displaying peptides--small pieces of virus or other foreign protein--on their surfaces. In a process called direct priming, dendritic cells generate these peptides by themselves after being infected by a virus. Alternatively, dendritic cells may first interact with other body cells that have been infected by a virus and then activate the T cells. This indirect route is called cross-priming.

Vaccines may exploit either route to T-cell priming, but scientists have not known enough about the mechanisms behind cross-priming to exploit this route in vaccine design.

Test tube experiments suggested that molecular "chaperones" accompany peptides from infected cells to dendritic cells, and a number of experimental vaccines have been designed on this premise. But few studies have been done to determine if chaperoned peptides play any role in animal systems, notes Dr. Yewdell.

If the chaperoned peptide theory is correct, infected cells that make the most peptides should most strongly stimulate cross-priming. Conversely, fewer peptides should mean less cross-priming. To test this prediction, Dr. Yewdell and his colleagues created virus-infected cells that were genetically or chemically prevented from producing peptides and injected those cells into mice. They found the opposite of what they expected: cross-priming correlated directly with levels of whole proteins, rather than levels of peptides, expressed by the virus-infected cells.

This new information could aid vaccine design, says Dr. Yewdell. "Our experiments indicate that two distinct pathways exist to prime T cells," he says. If the rules for T-cell priming suggested by these experiments are correct, vaccines meant to interact with dendritic cells should be designed to generate large amounts of peptides, while vaccines that target other kinds of cells should be designed to generate whole proteins that will go on to be processed in the dendritic cells during T-cell cross-priming.

Prompting a strong and specific T-cell reaction may be the key to vaccines that are effective against certain infectious diseases, including HIV/AIDS and malaria, notes Dr. Yewdell. It is also possible that a therapeutic vaccine might be developed to boost the T cell activity of people who have chronic liver infections caused by hepatitis B or C viruses.


NIAID is a component of the National Institutes of Health, an agency of the U.S. Department of Health and Human Services. NIAID supports basic and applied research to prevent, diagnose and treat infectious diseases such as HIV/AIDS and other sexually transmitted infections, influenza, tuberculosis, malaria and illness from potential agents of bioterrorism. NIAID also supports research on transplantation and immune-related illnesses, including autoimmune disorders, asthma and allergies.

Reference: CC Norbury et al. CD8+ cell cross-priming via transfer of proteasome substrates. Science 304:1318-21 (2004).

Press releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>