Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging study shows brain maturing

18.05.2004


The brain’s center of reasoning and problem solving is among the last to mature, a new study graphically reveals. The decade-long magnetic resonance imaging (MRI) study of normal brain development, from ages 4 to 21, by researchers at NIH’s National Institute of Mental Health (NIMH) and University of California Los Angeles (UCLA) shows that such "higher-order" brain centers, such as the prefrontal cortex, don’t fully develop until young adulthood.


Time-Lapse Imaging Tracks Brain Maturation from ages 5 to 20
Constructed from MRI scans of healthy children and teens, the time-lapse "movie" (http://www.nimh.nih.gov/press/prbrainmaturing.mpeg), from which the above images were extracted, compresses 15 years of brain development (ages 5 - 20) into just a few seconds. Red indicates more gray matter, blue less gray matter. Gray matter wanes in a back-to-front wave as the brain matures and neural connections are pruned. Areas performing more basic functions mature earlier; areas for higher order functions mature later. The prefrontal cortex, which handles reasoning and other "executive" functions, emerged late in evolution and is among the last to mature. Studies in twins are showing that development of such late-maturing areas is less influenced by heredity than areas that mature earlier.

Source: Paul Thompson, Ph.D.
UCLA Laboratory of Neuroimaging



A time-lapse 3-D movie that compresses 15 years of human brain maturation, ages 5 to 20, into seconds shows gray matter – the working tissue of the brain’s cortex – diminishing in a back-to-front wave, likely reflecting the pruning of unused neuronal connections during the teen years. Cortex areas can be seen maturing at ages in which relevant cognitive and functional developmental milestones occur. The sequence of maturation also roughly parallels the evolution of the mammalian brain, suggest Drs. Nitin Gogtay, Judith Rapoport, NIMH, and Paul Thompson, Arthur Toga, UCLA, and colleagues, whose study is published online during the week of May 17, 2004 in The Proceedings of the National Academy of Sciences.

"To interpret brain changes we were seeing in neurodevelopmental disorders like schizophrenia, we needed a better picture of how the brain normally develops," explained Rapoport.


The researchers scanned the same 13 healthy children and teens every two years as they grew up, for 10 years. After co-registering the scans with each other, using an intricate set brain anatomical landmarks, they visualized the ebb and flow of gray matter – neurons and their branch-like extensions – in maps that, together, form the movie showing brain maturation from ages 5 to 20.

It was long believed that a spurt of overproduction of gray matter during the first 18 months of life was followed by a steady decline as unused circuitry is discarded. Then, in the late l990s, NIMH’s Dr. Jay Giedd, a co-author of the current study, and colleagues, discovered a second wave of overproduction of gray matter just prior to puberty, followed by a second bout of "use-it-or-lose-it" pruning during the teen years.

The new study found that the first areas to mature (e.g., extreme front and back of the brain) are those with the most basic functions, such as processing the senses and movement. Areas involved in spatial orientation and language (parietal lobes) follow. Areas with more advanced functions -- integrating information from the senses, reasoning and other "executive" functions (prefrontal cortex) – mature last.

In a related study published a few years ago, Rapoport and colleagues discovered an exaggerated wave of gray matter loss in teens with early onset schizophrenia. These teens, who became psychotic prior to puberty, lost four times the normal amount of gray matter in their frontal lobes, suggesting that childhood onset schizophrenia "may be an exaggeration of a normal maturation process, perhaps related to excessive synaptic pruning," note the researchers. By contrast, children with autism show an abnormal back-to-front wave of gray matter increases, rather than decreases, suggesting "a specific faulty step in early development."

Also participating in the new study were: Leslie Lusk, Cathy Vaituzis, Tom Nugent, David Herman, Drs. Deanna Greenstein, Liv Clasen, NIMH; Kiralee Hayashi, UCLA.


NIMH is part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/press/prbrainmaturing.mpeg
http://www.nimh.nih.gov/

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>