Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second Generation Targeted Antibodies - It’s All in the Binding

06.05.2004


The overproduction, or ‘overexpression’, of the epidermal growth factor receptor (EGFR) is one of the most common aberrations in cancer, and subsequently agents that inhibit EGFR are among the most hotly-pursued potential products in the pharmaceutical industry. Now, just weeks after one of the first anti-EGFR antibodies, ImClone’s Erbitux (Cetuximab), was approved for use in Europe and the USA, a ‘second generation’ anti-EGFR antibody is set to enter early-phase clinical trials in Australia. In two articles recently published in the Journal of Biological Chemistry, research teams from the Melbourne Branch of the international Ludwig Institute for Cancer Research (LICR) have elucidated the unique binding properties of an anti-EGFR antibody, called 806, that is able to discriminate between EGFR molecules on cancer cells and EGFR molecules on normal cells.



“There is already one anti-EGFR antibody on the market, and there are several more in clinical trials,” says Dr. Andrew Scott, the Head of the LICR Melbourne Branch’s Clinical Program. “Although these anti-EGFR antibodies do show some anti-tumor activity in patients, they are far from ideal because they bind to EGFR on both cancer cells and normal cells. As a result, they target normal tissues as well as the tumor, and side-effects, although mild, are common.” Perhaps more importantly, the ‘first generation’ antibodies are limited in their clinical application and their capacity for improvement. “We need to increase the therapeutic efficacy of the available anti-EGFR antibodies,” explains Dr. Scott. “What we would like to do is attach a lethal agent to an anti-EGFR antibody, such as a cytotoxic molecule or a radioisotope, so that the agent is targeted directly to the cancer cell. With the 806 antibody, we should be able to both interfere with EGFR signaling and deliver lethal agents to cancers, without causing severe side-effects through the destruction of normal, healthy cells, particularly in the liver and skin.”

The 806 antibody was originally discovered at the LICR’s New York Branch and has since been developed further through a concerted, international effort by LICR scientists at Branches in New York, San Diego, Stockholm, and Melbourne. The antibody was initially intended to target a mutated form of EGFR and was being developed as a treatment for brain tumors called glioblastomas. However, during comprehensive pre-clinical analyses it was found that the 806 antibody bound not only to the glioblastoma-specific mutant form of EGFR, it also bound to a significant proportion of EGFR positive cancers, but not to any normal tissue. The LICR teams subsequently showed that 806 has a potent anti-tumor activity in animal models of human cancers that overexpress EGFR.


The LICR Melbourne Branch has a longstanding research program in EGFR structure and biology, and in a recent pivotal discovery participated in defining the 3D-structures of the extracellular domains of the EGFR and a related protein, erbB2/HER-2, which is implicated in many breast cancers. The most recent papers describe in detail how EGFR undergoes alterations in its conformation as it is activated, and where the 806 antibody binds to the activated EGFR when the molecule is overexpressed on the surface of a cancer cell. According to Dr. Antony Burgess, the Director of the LICR Melbourne Branch, the elucidation of these conformational changes is crucial to designing more effective cancer therapies. “To rationally design antibodies that improve the targeting to EGFR, or any other cell surface receptor for that matter, you need to have an understanding of how the molecule works. The results from these two papers suggest how we might be able to design more antibodies, like 806, which bind to different conformations of a single molecule, and are thus able to discriminate between normal and tumor cells.”

Clinical-grade 806 antibody has been produced within LICR’s own biological production facilities for the first early-phase clinical trial. The trial, which will investigate the safety, dose, and tissue distribution of the 806 antibody in patients with head and neck or lung cancers, will commence in Melbourne this year.

Sarah White | LICR
Further information:
http://www.licr.org/C_news/040506_EGFR.php

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>