Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Second Generation Targeted Antibodies - It’s All in the Binding

06.05.2004


The overproduction, or ‘overexpression’, of the epidermal growth factor receptor (EGFR) is one of the most common aberrations in cancer, and subsequently agents that inhibit EGFR are among the most hotly-pursued potential products in the pharmaceutical industry. Now, just weeks after one of the first anti-EGFR antibodies, ImClone’s Erbitux (Cetuximab), was approved for use in Europe and the USA, a ‘second generation’ anti-EGFR antibody is set to enter early-phase clinical trials in Australia. In two articles recently published in the Journal of Biological Chemistry, research teams from the Melbourne Branch of the international Ludwig Institute for Cancer Research (LICR) have elucidated the unique binding properties of an anti-EGFR antibody, called 806, that is able to discriminate between EGFR molecules on cancer cells and EGFR molecules on normal cells.



“There is already one anti-EGFR antibody on the market, and there are several more in clinical trials,” says Dr. Andrew Scott, the Head of the LICR Melbourne Branch’s Clinical Program. “Although these anti-EGFR antibodies do show some anti-tumor activity in patients, they are far from ideal because they bind to EGFR on both cancer cells and normal cells. As a result, they target normal tissues as well as the tumor, and side-effects, although mild, are common.” Perhaps more importantly, the ‘first generation’ antibodies are limited in their clinical application and their capacity for improvement. “We need to increase the therapeutic efficacy of the available anti-EGFR antibodies,” explains Dr. Scott. “What we would like to do is attach a lethal agent to an anti-EGFR antibody, such as a cytotoxic molecule or a radioisotope, so that the agent is targeted directly to the cancer cell. With the 806 antibody, we should be able to both interfere with EGFR signaling and deliver lethal agents to cancers, without causing severe side-effects through the destruction of normal, healthy cells, particularly in the liver and skin.”

The 806 antibody was originally discovered at the LICR’s New York Branch and has since been developed further through a concerted, international effort by LICR scientists at Branches in New York, San Diego, Stockholm, and Melbourne. The antibody was initially intended to target a mutated form of EGFR and was being developed as a treatment for brain tumors called glioblastomas. However, during comprehensive pre-clinical analyses it was found that the 806 antibody bound not only to the glioblastoma-specific mutant form of EGFR, it also bound to a significant proportion of EGFR positive cancers, but not to any normal tissue. The LICR teams subsequently showed that 806 has a potent anti-tumor activity in animal models of human cancers that overexpress EGFR.


The LICR Melbourne Branch has a longstanding research program in EGFR structure and biology, and in a recent pivotal discovery participated in defining the 3D-structures of the extracellular domains of the EGFR and a related protein, erbB2/HER-2, which is implicated in many breast cancers. The most recent papers describe in detail how EGFR undergoes alterations in its conformation as it is activated, and where the 806 antibody binds to the activated EGFR when the molecule is overexpressed on the surface of a cancer cell. According to Dr. Antony Burgess, the Director of the LICR Melbourne Branch, the elucidation of these conformational changes is crucial to designing more effective cancer therapies. “To rationally design antibodies that improve the targeting to EGFR, or any other cell surface receptor for that matter, you need to have an understanding of how the molecule works. The results from these two papers suggest how we might be able to design more antibodies, like 806, which bind to different conformations of a single molecule, and are thus able to discriminate between normal and tumor cells.”

Clinical-grade 806 antibody has been produced within LICR’s own biological production facilities for the first early-phase clinical trial. The trial, which will investigate the safety, dose, and tissue distribution of the 806 antibody in patients with head and neck or lung cancers, will commence in Melbourne this year.

Sarah White | LICR
Further information:
http://www.licr.org/C_news/040506_EGFR.php

More articles from Health and Medicine:

nachricht Underwater Snail-o-Bot gets kick from light
27.02.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Existing drugs may offer a first-line treatment for coronavirus outbreak
27.02.2020 | Norwegian University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>