Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dampened hopes for transplanting bone marrow stem cells in heart attacks

06.05.2004


There is little, if any, evidence that adult stem cells can build other cells in an adult organism than those formed in the organs they themselves come from. At any rate, blood stem cells do not convert to heart muscle cells in a damaged heart, which was previously hoped. This has been shown by a research team from the Stem Cell Center at Lund University in Sweden in an article in Nature Medicine.



During the end of the 1990s and early 2000s scientists nourished great hopes that adult stem cells would be able to develop into all sorts of cells. If so, it would not be necessary to use the ethically more problematic embryonic stem cells. However, newer studies have shown that while adult stem cells are very good at producing different types of cells in their own respective organs, they have little or no ability to form cells in other organs.

“Both we and two American research teams have used various methods to replicate a study from three years ago that appeared in Nature. It was about transplanting blood stem cells to create new heart muscle cells to repair a heart after a heart attack. But all of our results univocally indicate that this is not possible,” says Jens Nygren. He is a doctoral student and part of research team headed by Professor Sten Eirik Jacobsen at the Stem Cell Center.


What the Lund scientists have found is that the transplanted cells that remain in the infarcted area retain their identity as blood cells. On the other hand, outside the infarcted area a so-called fusion did occur between the transplanted cells and heart muscle cells.

Such fused cells can sometimes look as if they had been formed from a transplanted stem cell. In other words, fusions may explain the first promising studies: the scientists believed they were looking at cells produced by maturation of blood stem cells, whereas in actual fact they were seeing a tiny number of fused cells.

Now it is time for second thoughts, and these might affect the many large-scale patient trials that were initiated during the hopeful period. In Sweden there is only one entirely new trial underway, and it can easily be discontinued, but in Germany and elsewhere a huge number of patients have already had blood stem cells transplanted into their heart, and more transplants are in planned. The question is whether there is any reason to continue these trials, or whether they should be ended. There are some indications that bone marrow transplants have a certain positive effect on the heart function after an infarction, but the mechanism behind this remains an open question.

Sten Eirik Jacobsen’s research team is now primarily focusing on how blood production from stem cells is regulated. They are also going to carry on their work to understand what fusion between bone marrow cells and heart musculature might entail, both in adult hearts and in fetal development.

Ingela Björck | alfa
Further information:
http://www.stemcell.lu.se

More articles from Health and Medicine:

nachricht Finding new clues to brain cancer treatment
21.02.2020 | Case Western Reserve University

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

A genetic map for maize

24.02.2020 | Agricultural and Forestry Science

Where is the greatest risk to our mineral resource supplies?

24.02.2020 | Earth Sciences

Computer vision is used for boosting pest control efficacy via sterile insect technique

24.02.2020 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>