Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dental pulp cells may hold key to treatment of Parkinson’s disease

05.05.2004


Cells derived from the inside of a tooth might someday prove an effective way to treat the brains of people suffering from Parkinson’s disease



A study in the May 1 issue of the European Journal of Neuroscience shows dental pulp cells provide great support for nerve cells lost in Parkinson’s disease and could be transplanted directly into the affected parts of the brain. The study’s lead author is Christopher Nosrat, an assistant professor of biological and materials sciences at the University of Michigan School of Dentistry.

This is not the first test of stem cells as a therapy for Parkinson’s disease-type illnesses, known as neurodegenerative diseases, but Nosrat noted that it is the first to use post-natal stem cells grown from more readily available tooth pulp in the nervous system.


Using dental pulp has other advantages besides its availability, Nosrat said. The cells produce a host of beneficial "neurotrophic" factors, which promote nerve cell survival.

Parkinson’s disease is characterized by symptoms including tremors of the hands, arms or legs, rigidity of the body and difficulty balancing while standing or walking. Parkinson’s affects nerve cells in the part of the brain called the basal ganglia, which is responsible for control of voluntary movement. An estimated 1 million Americans suffer from Parkinson’s disease, for which there is no cure.

Nosrat’s study involved evaluating the potential of injecting tooth cells into brain cells as a possible cell-based therapy for Parkinson’s. He was testing whether the tooth cells could provide neurotrophic factors to support dying nerve cells and replace dead cells.

Nosrat also has studied dental pulp stem cells as a treatment for spinal cord injuries and said applying that knowledge to treatment of neurodegenerative disease was the next logical step.

He used the same general approach for this Parkinson’s study: researchers extract a tooth and draw cells from the center of the tooth, then culture them in a Petri dish to increase the number of the cells. The cell mixture then contains neuronal precursor cells and cells that produce beneficial neurotrophic factors.

Nosrat emphasized that there is much work to be done before human patients might find relief from Parkinson’s symptoms as a result of this therapy. It is still many years from being tested in people as a possible treatment or cure for neurological disorders.

Previous studies have used other sources for stem cells, and in animal and human studies, most of those cells die when grafted into the brain. Nosrat believes cells drawn from dental pulp are more robust because they also produce the neurotrophic factors, which promote nerve cell survival. Nosrat hopes that by refining the delivery method---by focusing the treatment much more specifically on affected parts of the brain and the co-delivery of neurotrophic factors---he can eventually achieve success.

European Journal of Neuroscience is the official journal for the federation of European neuroscience societies: http://www.blackwellpublishing.com/journal.asp?ref=0953-816X&site=1.

The article is titled "Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro, implications for tissue engineering and repair in the nervous system."

Nosrat’s co-authors are his wife, Irina Nosrat, Christopher Smith and Patrick Mullally, at the U-M School of Dentistry, and Lars Olson at the Karolinksa Institutet in Stockholm, Sweden.


###
Partial funding for the study came from the National Institute of Dental and Craniofacial Research, part of the National Institutes of Health, as well as from the Michigan Parkinson’s Foundation.

Colleen Newvine | EurekAlert!
Further information:
http://bms.dent.umich.edu/people/nosrat.html
http://www.umich.edu/~newsinfo/Releases/2001/Sep01/r090401.html

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>