Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds HIV protein can drive immune cells away

04.05.2004


Clue to how virus avoids immune system activity may lead to new treatment strategy



Massachusetts General Hospital (MGH) researchers may have provided another clue to the mystery of how HIV, the virus that causes AIDS, evades the defenses of the immune system. In the May issue of the Journal of Virology, a team from the Partners AIDS Research Center at MGH describes finding how a key protein that helps the virus enter its target T helper cells may also keep away the T killer cells that should destroy HIV-infected cells.

“One of the big questions in understanding HIV is why we can see immune responses that are effective in the test tube but do not eradicate the virus in the infected patient,” says Mark Poznansky, MD, PhD, of the Partners AIDS Research Center (PARC) and the MGH Infectious Disease Unit, the paper’s senior author. “We have identified a potential new mechanism by which pathogens can repel immune cells and thereby evade the immune system.”


In 2000, Poznansky and colleagues published a report that found how a protein called SDF-1, known to attract immune cells, can actually repel T cells when present in elevated quantities. SDF-1 is a chemokine, a protein normally produced to summon immune cells to the site of an injury or infection. The molecule is known to interact with a T cell receptor called CXCR4 which also is used by HIV when it binds to and enters T helper cells. Investigating whether HIV infection involves the same kind of cellular repulsion observed in the earlier study – a process the researchers dubbed “fugetaxis” – seemed a logical next step.

In a series of experiments led by Diana Brainard, MD, a research fellow in Poznansky’s lab, the team first found that while low concentration of gp120, the HIV protein that interacts with CXCR4, attracted T killer cells, higher concentrations induced the immune cells to move away. They then showed that it was the specific interaction of gp120 with CXCR4 that controlled T cell movement, and that the same repulsion could be produced specifically with T killer cells programmed to attack HIV.

The researchers then used immunized mice to look at the effects of the viral protein in vivo. One day after the mice were injected with an antigen to which they had been previously immunized, they received an additional injection of either low- or high-dose recombinant gp120 protein or saline as a control. For up to 24 hours afterwards, mice receiving the high-dose gp120 were found to have a significantly lower immune response to the antigen injection than either control mice or those that had received the low-dose gp120.

“This is the first report of fugetaxis caused by a viral gene product and could be an important way that HIV keeps the immune system at bay,” Poznansky says. “We don’t know yet if this process occurs in patients infected with HIV, but if it does, it provides a new therapeutic approach that could block this viral protein activity and allow immune cells to do their job.”

Brainard and Poznansky add that this mechanism could also be used by other viruses – including the pox viruses, papilloma viruses and herpes viruses – that remain in the body after initial infection and have proteins known to influence cellular movement. Poznansky is an assistant professor of Medicine at Harvard Medical School.

Additional co-authors are William Tharp, Elva Granado, Nicholas Miller, Alicja Trocha and Bruce Walker, MD, of MGH/PARC; Xiang-Hui Ren, MD, and Ernest Terwilliger, PhD, of Beth Israel Deaconess Medical Center; Brian Conrad, University of Michigan; and Richard Wyatt, Dana Farber Cancer Institute. The work was supported by grants from the U.S. Public Health Service and the American Foundation for AIDS Research.


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $400 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | MGH
Further information:
http://www.massgeneral.org/news/releases/050304poznansky.html

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>