Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Plasmodium togetherness a strategy for breeding success

03.05.2004


Malaria is a pernicious public health problem in many areas of the world. Sub-Saharan Africa, where cases recorded represent over 90% of the world total, is particularly badly hit. Modelling by IRD scientists has revealed a core feature in the life-cycle of Plasmodium falciparum, the parasite responsible for the disease. Its gametocytes, the pre-gamete sexual forms, aggregate in clusters in human blood capillaries and, once ingested, keep this form until they reach the ideal breeding ground the mosquito’s stomach provides. Conditions there favour encounters, and hence binding, between male and female gametocytes, thereby enhancing the parasite’s fertilization and reproduction capacity. Investigation of this behaviour should yield important information on both the parasite’s transmission to humans and on the way the disease develops.



Malaria, which infects 600 million people in the world and leads annually to 2 million deaths, is the most widespread of infectious diseases. The pathological agent is a microscopic parasite of the Plasmodium genus which develops inside the host’s erythrocytes. Plasmodia go through a series of asexual reproduction cycles before a transition takes place from asexual stages to production of sexual cells, the gametocytes or pre-gametes, in the host blood. The females of Anopheles, the mosquito vector, ingest blood and gametocytes during a nocturnal feed on human skin. The meal reaches the mosquito’s stomach where Plasmodium sexual reproduction takes place. An encounter and subsequent binding between a male and a female gametocyte produces a zygote which will give rise to infectious forms. These migrate up to the mosquito salivary glands. From there they are transmitted to humans during a second blood meal.

Experimental gametocyte counts in the blood ingested by mosquitoes that had bitten volunteers naturally infected with Plasmodium falciparum showed that these sexual forms are overdispersed, in other words they have a heterogeneous distribution in the mosquito stomach. Their numbers vary between the different blood meals taken on the same volunteer, a feature previously observed in the case of large parasites (macroparasites), such as microfilariae (250 microns).


The IRD team is researching Plasmodium biology and the modes of transmission from the vector to humans and from humans to the vector. They used a computerized simulation model (the individual based model) of gametocyte behaviour in human blood circulation and at the moment of ingestion by the mosquitoes, aiming to find an explanation for this heterogeneity and its role in the parasite’s reproduction.

In the microfilariae, nematode agents of filariases, heterogeneity in the number of parasites ingested by the mosquitoes results from queues of varying lengths they form in the capillaries. Thus a similar aggregation event might occur in Plasmodium gametocytes, even if their very small size (10 microns) theoretically predestine them for a homogeneous distribution in the mosquito stomach. Simulations tested this hypothesis, each assuming different quantities of circulating gametocytes. They showed that the heterogeneous distribution of gametocytes ingested by the mosquito is no chance feature but is density-dependent, increasing with the gametocyte density. This heterogeneity could result from gametocyte togetherness, or aggregation, in the blood capillaries, the clusters so formed persisting in the mosquito stomach where sexual reproduction takes place. Field experiments conducted in Senegal, then others in Cameroon, on blood ingested by mosquitoes from naturally infected volunteers have confirmed these results, thus validating the model the research team adopted.

Comparison of the behaviour of free and clustered gametocytes has illuminated an essential life-cycle characteristic of Plasmodium, the most extensively studied malaria parasite. Aggregation is a means of optimizing the zygote (fertilized ova) production, which results from the encounter and binding between two gametocytes of opposite sex, and therefore of enhancing the production of infectious forms and the parasite’s reproduction rate. Bound in the human host’s peripheral capillaries, male and female gametocytes ingested by a mosquito increase the likelihood of their meeting inside the propitious breeding ground the fly’s stomach provides. The gametocytes differentiate into gametes that possess no particular means of attraction, so this lover’s ritual of clustering is a sophisticated parasite reproduction strategy which compensates for its gametes’ lack of attraction mechanism. Further research is planned, with three main objectives: refining the gametocyte behaviour model; finding out the triggering mechanism behind the cell binding events, well known in the asexual forms which cause cerebral malaria; and identifying the factors that influence the cluster formation.


Marie Guillaume – DIC
Traduction : Nicholas Flay

For further information

Contact: Gaston Pichon, IRD - UR 79 GEODES " Géométrie des espaces organisés, dynamiques environnementales et simulations " - 32 av. Henri Varagnat, 93143 Bondy cedex, France. Tel.: 33-1-48-02-5976. Fax: 33-48-47-30-88. Email: Gaston.Pichon@bondy.ird.fr

Contacts IRD Communication: Marie Guillaume (editor), Tel.:33-1-48-03-76-07, Email: guillaum@paris.ird.fr ; Bénédicte Robert (press officer), Tel.: 33-1-48-03-75-19, Email:presse@paris.ird.fr

Reference :
F. O. Gaillard, C. Boudin, N. P. Chau, V. Robert and G. Pichon, 2003 – Togetherness among Plasmodium falciparum gametocytes: interpretation through simulation and consequences for malaria transmission, Parasitology, 127, 427-435.

To obtain illustrations concerning this research Contact Indigo Base, IRD picture library, Claire Lissalde or Danièle Cavanna, Tel.: 33-1-48-03-78-99, Email: indigo@paris.ird.fr

Bénédicte Robert | EurekAlert!
Further information:
http://www.ird.fr/fr/actualites/fiches/2004/fiche194.htm

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Time-resolved measurement in a memory device

19.02.2020 | Physics and Astronomy

Mixed-signal hardware security thwarts powerful electromagnetic attacks

19.02.2020 | Information Technology

Could water solve the renewable energy storage challenge?

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>