Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enzyme Prevents Lung Damage in Premature Infants

03.05.2004


An enzyme that protects the body from reactive chemicals called free radicals is crucial in preventing the inflammation that causes chronic lung disease in premature infants, according to three new studies.

The findings could lead to improved treatments to alleviate such inflammation, preserving the lungs of premature infants, said Richard Auten, M.D., a neonatalogist and associate professor of pediatrics at Duke University Medical Center. Auten and colleagues from the Medical College of Wisconsin reported their findings in three presentations on May 2 and 3, 2004, at the Pediatric Academic Societies’ annual meeting in San Francisco. The research was sponsored by the American Lung Association and the National Institutes of Health.

In studies with mice, the researchers previously found that infant animals with an extra copy of the gene for the crucial enzyme, called superoxide dismutase, were better able to defend themselves against oxygen-free radicals. Oxygen-free radicals are highly reactive forms of oxygen that can readily combine with and damage proteins and other molecules in body tissues such as the lungs. Superoxide dismutase reacts with oxygen-free radicals, converting them into harmless byproducts.



The free radicals that attack lung cells are produced by white blood cells enlisted by the infant’s immune system, and are not only a result of the oxygenated air breathed in by babies, according to experiments in lung cells conducted by Auten and his colleagues. This damage to lung cells can be partly prevented by turning on the gene which produces superoxide dismutase, the researchers found.

The fragile lungs of premature babies cannot take in enough air to support life, but supplemental oxygen or ventilation can damage delicate, underdeveloped lung tissue, causing inflammation and respiratory distress. Even exposure to normal room air may overwhelm the lungs of a premature infant, Auten said. The damage triggers the infant’s immune system, which sends in a horde of white blood cells that scavenger damaged tissue. But in premature infants, the white blood cells often stay in the lungs too long causing even more damage. The persistent inflammation also delays lung development and robs nutrients from other organs.

"We want to understand how to modify this immune response in a safe way that prevents inflammation but avoids infections and allow normal lung development," Auten said. The key to stopping such inflammation in infant lungs might be superoxide dismutase, he said.

The enzyme may also encourage lung development, Auten and his colleagues found. The transgenic mice with an extra copy of the superoxide dismutase gene had better blood vessel growth in their lungs than normal mice when exposed to a 95 percent oxygen environment for one week.

Inflammation caused by an overactive immune system is not the only source of lung problems for premature infants. Their lungs lack surfactant, a protein that lubricates the lung’s surface cells and help keep small air sacs, called alveoli, open and functioning. Most premature babies also have too few alveoli, which prevents their lungs from fully expanding and taking in enough air. Combined with the need for supplemental oxygen or ventilation, these factors lead to respiratory distress syndrome and chronic lung disease.

Currently, there is no good treatment to stop the cascade of injury in which inflammation meant to heal becomes a biochemical attack on the body’s own tissue. Steroids can alleviate the inflammation, but the drugs can slow brain and lung growth and impair immune function. The average hospital stay for infants who develop chronic lung disease -- stiff, scarred lungs -- is six months, according to the National Institutes of Health.

Auten’s co-authors include Mohamed Ahmed, M.D., fellow, Duke University School of Medicine; Ganesh Konduri, M.D., associate professor of pediatrics, Medical College of Wisconsin; Ann Lee, M.D., fellow, Medical College of Wisconsin; Neil Hogg, Ph.D., associate professor of biophysics, Medical College of Wisconsin; and Rose Verber, research technologist, Medical College of Wisconsin.

Becky Oskin | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7569
http://neonatology.mc.duke.edu/index.htm

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>