Grow Your Own Teeth

People who have lost or damaged teeth could soon be growing their own, thanks to a major scientific breakthrough by a start-up, Odontis Ltd, formed by King’s College, London. An investment of £400,000 from NESTA (the National Endowment for Science, Technology and the Arts) – the organisation that nurtures UK creativity and innovation and the Wellcome Trust biomedial research charity, will enable the company to move onto the next stage of development.

Damaged or missing teeth are a large and significant problem with dentures, bridges or synthetic implants being the only treatment currently available. These methods are often invasive and surgically traumatic.

Odontis’ pioneering technology will allow the patient to grow his or her own natural replacement teeth instead of having a synthetic implant. As well as the benefit of not experiencing surgical trauma, there is also the psychological boost of ‘having one’s own teeth’.

The project is the brainchild of genetic research scientist, Professor Paul Sharpe, who is currently the Head of Division of Craniofacial Biology and Biomaterials of the Dental Institute, Kings College London. His discovery is based on human stem cell technology.

Stem cells are taken from the patient, treated and cultured in a laboratory, then re-implanted in the patient’s jaw under the gum at the site of the missing or extracted tooth. This then grows into a fully-formed, live tooth in the same way that teeth develop naturally.

To date, no companies or research groups in the world have been able to demonstrate the formation of a living, natural tooth.

In both the US and UK, adults aged over 50 lose on average 12 teeth, including four wisdom molars, from a full complement of 32 teeth. Lost teeth can lead to problems with health, nutrition and appearance.

On receiving NESTA’s investment, Professor Sharpe says: “We are delighted to receive this investment from NESTA and the Wellcome Trust. It will be a major help in taking the technology forward which will be eventually used on patients.”

The project is receiving a total investment of £500,000: £100,000 from NESTA, £300,000 University Translation Award from the Wellcome Trust and £100,000 from a business angel. Kinetique Biomedical Seed Fund has already invested £250,000 in the proof of concept phase.

Professor Sharpe, adds: “A key medical advantage of our technology is that a living tooth can preserve the health of the surrounding tissues much better than artificial prosthesis. Teeth are living, and they are able to respond to a person’s bite. They move, and in doing so they maintain the health of the surrounding gums and teeth.”

Mark White, NESTA Invention and Innovation Director, says: “Odontis have come up with a dental method that is highly innovative and pioneering in its approach. We hope that our seed investment will bring about a major success story for UK the research and science community.”

Media Contact

Hannah Daws alfa

More Information:

http://www.nesta.org.uk

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors