Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers determine fibrin depletion decreases multiple sclerosis symptoms

20.04.2004


Tissue damage due to Multiple Sclerosis (MS) is reduced and lifespan lengthened in mouse models of the disease when a naturally occurring fibrous protein called fibrin is depleted from the body, according to researchers at the University of California, San Diego (UCSD) School of Medicine.



The study, reported online the week of April 19, 2004 in the Proceedings of the National Academy of Sciences, identifies fibrin as a potential target for therapeutic intervention in the disease, which affects an estimated one million people worldwide.

However, the research team cautions that fibrin plays an important role in blood clotting and systemic fibrin depletion could have adverse effects in a chronic disease such as MS. Therefore, additional research is needed to specifically target fibrin in the nervous system, without affecting its ability as a blood clotting protein.


"Multiple sclerosis is a nervous system disease with vascular damage, resulting from the leakage of blood proteins, including fibrin, into the brain," said the study’s first author, Katerina Akassoglous, Ph.D., a UCSD School of Medicine assistant professor of pharmacology. "Our study shows that fibrin facilitates the initiation of the inflammatory response in the nervous system and contributes to nerve tissue damage in an animal model of the disease."

MS is an autoimmune disease that affects the central nervous system (CNS), causing a variety of symptoms including loss of balance and muscle coordination, changes in cognitive function, slurred speech, bladder and bowel dysfunction, pain, and diminished vision. While the exact cause of MS is unknown, a hallmark of the disease is the loss of a material called myelin that coats nerve fibers, and the inability of the body’s natural processes to repair the damage.

Although fibrin is best known for its important role in blood clotting, recent studies have shown that fibrin accumulates in the damaged nerves of MS patients, followed by a break down of myelin. However, the cellular mechanisms of fibrin action in the central nervous system have not been known, nor have scientists determined if fibrin depletion could alleviate or lessen the symptoms of MS.

In work performed at The Rockefeller University, New York and the UCSD School of Medicine, in collaboration with colleagues at the University of Vienna, Austria and Hellenic Pasteur Institute, Greece, researchers studied normal mice and transgenic mice with an MS-like condition. The normal mice had normal spinal cords and with no fibrin deposits in the central nervous system. In contrast, the transgenic mice showed fibrin accumulation, inflammation and a degradation of the myelin in their spinal cord. When transgenic mice were bred without fibrin, they developed a later onset of the MS-like paralysis as compared to their transgenic brothers that had fibrin. In addition, the fibrin-depleted mice lived for one additional week longer than the normal, disease-impacted mice. This difference is significant in animal models such as mice that have very short lifespans.

Fibrin’s role in excessive inflammation was shown in a follow-up experiment where transgenic mice were shown to experience high expression of pro-inflammatory molecules, followed by myelin loss, as compared to the fibrin-negative transgenic mice with no signs of inflammation or myelin destruction.

In addition to the genetic deletion of fibrin, the researchers tested drug-induced fibrin depletion, which was accomplished by administering ancrod, a snake venom protein, to the transgenic mice. Consistent with the genetics-based experiments, the pharmacological depletion also delayed the onset of inflammatory myelin destruction and down-regulated the immune response. Previous studies by other investigators who used ancrod in experimental autoimmune encephalomyelitis (EAE), another animal model of MS, also showed amelioration of neurologic symptoms.

In the current study, the investigators also used cell culture studies to determine that fibrin activates macrophages, the major cell type that contributes to inflammatory myelin destruction.

Akassoglou said that "further research to identify the cellular and molecular mechanisms that fibrin utilizes in the nervous system will provide pharmacologic targets that will specifically block the actions of fibrin in nervous system disease."


The study was funded by grants from the National Institutes of Health, the Wadsworth Foundation Award, and the National Multiple Sclerosis Society.

Sidney Strickland, Ph.D., Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, in whose lab Akassoglou first began her studies, was the senior author of the paper. Additional authors were Ryan Adams, Ph.D., UCSD Department of Pharmacology; Jan Bauer, Ph.D. and Hans Lassmann, M.D., Laboratory of Experimental Neuropathology, University of Vienna, Austria; Lesley Probert, Ph.D., and Vivi Tseveleki, B.Sc., Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece; and Peter Mercado, B.Sc., The Rockefeller University

Sue Pondrom | EurekAlert!
Further information:
http://www.ucsd.edu/

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>