Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malignant breast cancer cells to revert to normal with manipulation

19.04.2004


Speaking at Experimental Biology 2004, Dr. Mina Bissell describes research showing how manipulation of the extracellular matrix (a network of fibrous and globular proteins that surrounds breast cells) of non-malignant breast cells can lead to genomic instability via oxidative damage. She describes how manipulation of the microenvironment can allow malignant breast cancer cells to revert to normal cells again. She also describes how the tissue culture of the extracellular matrix affects the cancerous cells’ resistance to chemotherapy, independently of the characteristics of the malignancy itself.



Her presentation is part of the scientific program of the American Association of Anatomists, one of the six sponsoring societies of this year’s Experimental Biology meeting.

Dr. Bissell, a Distinguished Scientist at the Lawrence Berkeley Laboratory, is best known as the researcher who uncovered the critical role of extracellular matrix (ECM) in normal breast function and how its aberration may contribute to breast cancer development. While the role of ECM during embryonic development had been recognized for decades, its important role in tissue-specific function was not appreciated before the work in a handful of laboratories including Dr. Bissell’s laboratory. In fact, ECM was regarded as scaffolding for tissues and not much more.


Dr. Bissell postulated in 1981, and later showed experimentally, that the ECM was part of a "dynamic reciprocity" in the social interaction between cells and the nucleus much like hormones and growth factors, with the ECM at times telling the nucleus of the cells what to do and thus directing gene expression in conjunction with these other factors. She had chosen the breast to study the critical role of the ECM in normal breast tissue, a model she had selected because it continues to change throughout life of women in puberty, pregnancy, lactation, and once breast feeding is done (involution). In some of their earliest work, Dr. Bissell and her collaborators reported when breasts cells were placed on Petri dish tissue culture (2-D environment), even with all the right hormones and nutrients, they grew but did not differentiate and behave as breast cells do in the body. But when they were embedded in a 3-D extracellular matrix that mimicked real, living tissues, then the cells came together and organized as they would in the body, making tissue-like structures.

Studying how cancers develop and spread was a natural next step. One of the 3-D cell pioneers, Dr. Bissell believes science has concentrated too much on the cancer cell itself, when at times it’s what is outside those cells that lead to the affected cell’s genomic instability and mutation. Otherwise, she asks, why does everyone who has a BRCA 1 or 2 mutations not get breast cancer in every cell of the breast or ovary or indeed get it at all? Or perhaps more interestingly, since women who do have the mutation have it in every cell of their body, why does it only cause breast cancer and/or ovarian cancer? Why not also cancer of the skin or gut?

The 20th century will be remembered for the discovery of how genetic defects contribute to cancer. But in the 21st century, increasing evidence is being placed on the cellular microenvironment that makes up the context of cancer, both in ontogenesis, signaling the cell to permit expression of a cancer-causing gene, and in metastasis, when the nature of the ECM and its degrading enzymes may help allow cells to exist in microenvironments that differ from those in which they originated. Dr. Bissell’s research into the sophisticated manner in which the cellular environment affects gene expression within breast cells supports her belief that both normal and malignant cells are plastic and malleable, that normal cells can become malignant if the microenvironment is adversely affected, and that cancer cells even with many mutations can still become reverted to a normal phenotype. She also believes that the architecture of the tissue is important in how a tissue behaves and how it responds to chemotherapeutic agents.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>