Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists use gene therapy to restore function of damaged heart cells in lab

06.04.2004


Researchers at Jefferson Medical College and Duke University have used gene therapy to help damaged heart cells regain strength and beat normally again in the laboratory. The work takes the scientists one step closer to eventual clinical trials in humans.



Walter Koch, Ph.D., director of the Center for Translational Medicine of the Department of Medicine at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and his colleagues at Duke used a virus to carry a gene into the heart cells of individuals who had suffered from congestive heart failure. The gene introduced into these heart cells blocks the activity of an enzyme that is increased in failing human hearts and which contributes to the loss of the heart’s contractile strength during the development of heart failure. When the activity of this enzyme is blocked by the gene therapy, the heart cells were able to contract at normal strength and their overall performance was improved.

Dr. Koch and his co-workers at Duke University Medical Center in Durham, N.C., report their findings April 6, 2004, in Circulation, a journal of the American Heart Association.


According to Dr. Koch, who is W.W. Smith Professor of Medicine at Jefferson Medical College of Thomas Jefferson University, researchers have known for some time that the beta-adrenergic receptor system fails to work properly in individuals with congestive heart failure. Such receptors "drive the heart – both by rate and force of contraction," he says.

The researchers’ target has been the beta-adrenergic kinase (ßARK1), an enzyme that is elevated in human heart failure. One of its functions is to turn off beta-adrenergic receptors. "In heart failure, beta adrenergic receptor density is decreased, ßARK is increased and both together cause dysfunctional beta receptor signaling," Dr. Koch says. "A failing heart then has little capacity to respond to exercise or stress because there are fewer receptors and the remaining receptors are more or less turned off.

"We have thought that inhibiting ßARK activity could increase signaling and increase function," he explains. In the laboratory dish, the researchers infected heart cells from patients who underwent cardiac transplantation due to end-stage heart failure with an adenovirus that encoded both ßARKct – a peptide that can block ßARK – and a so-called "reporter gene" protein, which glows green. The latter provided a signal to the scientists that the inhibitor was indeed present in the heart cells. They then were able to use a video camera to actually measure how strong the individual heart cells were beating. The virus used in this study is a version of the common cold virus that has been rendered non-infectious and serves to carry the therapeutic gene to the failing heart cells.

"We put the ßARKct into the cells, and failing human hearts become more like normal hearts, based on their ability to contract and other functional properties of these cells was also improved," Dr. Koch says. "This is the first work in actual human hearts to show efficacy of ßARKct as a potential therapy and more importantly, proves that the enzyme ßARK1 is a target for heart failure treatment."

"This study is the last proof of concept," he adds, noting that years of previous work in various animal models enabled the research team to reach this point. "Now we are dealing with human cells from failing human hearts," he says, noting that essentially these studies in human heart cells "confirm all we have done."

Congestive heart failure affects nearly 5 million Americans, many of whom have poor long-term prognoses, despite recent therapeutic advances. Dr. Koch hopes that such studies will move gene therapy forward as a viable option for heart failure patients. He notes that pre-clinical studies in "clinically relevant" large animal models are progressing, and should eventually lead to human trials using the ßARKct gene.

Steve Benowitz | EurekAlert!
Further information:
http://www.jefferson.edu/

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>