Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV finds new way to play hide and seek

05.04.2004


The deadly virus HIV can mutate to prevent display of its components to immune cells, thus concealing itself from the body’s surveillance system and resulting in faster progression to AIDS, report Philip Goulder and colleagues in The Journal of Experimental Medicine. This has important implications for design of the long-sought-after vaccine for HIV.



When someone is infected with HIV, certain regions of viral proteins are chopped up and displayed by infected cells to their immune system, using platforms known as MHC molecules. These protein fragments are recognized by killer cells, which destroy the virus-infected cells. Viruses have evolved many clever mechanisms to avoid being detected in this way, including altering the protein fragments that our immune system recognizes. This study identifies for the first time, in the course of a natural human infection, HIV mutations outside of the regions that are recognized that actually prevent generation of the protein fragments. HIV can, apparently, alter its sequence so that the human chopping proteins can no longer grab onto the viral protein.

Cells infected with this mutant virus are not detected by the immune system, so the virus can replicate and increase in number. This was initially surprising, because the changes in the virus are in regions that are considered to be invisible to the immune system. But the new work indicates that vaccine designers must pay attention not only to the regions of HIV that are recognized by the immune system, but also to the nearby regions that allow the chopping proteins to do their work.



Contact: Dr Philip Goulder, The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford; 44-1865-281884; philip.goulder@clinical-medicine.oxford.ac.uk

Lynette Henry | EurekAlert!
Further information:
http://www.rupress.org/

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>