Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful stem cells harnessed to search for cancer metastasis

30.03.2004


Stem cells that act as seek-and-destroy missiles appear to be able to find cancer wherever it hides out - at least, so far, in animals.



This novel approach at gene therapy, reported by researchers from The University of Texas M. D. Anderson Cancer Center, may have use in a wide variety of both solid and blood cancers.

"This addresses our great need for cancer gene therapies aimed at curbing the metastatic spread of cancer cells," says Michael Andreeff, M.D., Ph.D., professor in the Departments of Blood and Marrow Transplantation and Leukemia. "It is exciting because it is an entirely new way of thinking about gene therapy and not just a twist of an old idea."


Andreeff will present both the concept, and a series of supporting animal studies, at the annual meeting of the American Association for Cancer Research.

The novel strategy takes advantage of the fact that tumors attract a certain kind of stem cell, mesenchymal progenitor cells (MSC), which act as the body’s natural tissue repair system. These unspecialized cells migrate to an injury by responding to signals from the area, and there they develop the kind of connective tissue that is needed to repair the wound.

But they also respond to tumors -- often characterized as "never healing wounds" -- which "call" the stem cells to help build up normal tissue that is needed to support the cancer, says Andreeff.

Andreeff and a team of researchers removed a small number of MSC from the bone marrow, expanded them in the laboratory, and genetically altered the stem cells with a variety of therapeutic genes. When intravenously injected into tumor-bearing mice, the millions of engineered stem cells engraft in the cancer, and activate their genetic payload, which then attacks the cancer.

Andreeff will present animal data suggesting that gene modified MSC can inhibit the growth of leukemias, lung metastases of melanomas and breast cancer, ovarian and brain tumors. For example, MSC gene therapy cured 70 percent of mice implanted with one kind of human ovarian cancer. So far, researchers delivered interferon alpha and beta, and an oncolytic (tumor-destroying) virus into the tumors.

"This drug delivery system is attracted to cancers, both primary and metastatic, and anti-tumor effects are observed when the cells integrate into the tumor microenvironment" says Andreeff. "The most important discovery here is that these cells are capable of migrating from the bone marrow or blood circulation selectively into tumors and produce anti-tumor agents only at the sites of these tumors and their metatasis."

Julie Penne | EurekAlert!
Further information:
http://www.mdanderson.org/

More articles from Health and Medicine:

nachricht Preventing metastasis by stopping cancer cells from making fat
23.01.2020 | Université catholique de Louvain

nachricht Possible Alzheimer's breakthrough suggested
22.01.2020 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Residues in fingerprints hold clues to their age

23.01.2020 | Life Sciences

Here, there and everywhere: Large and giant viruses abound globally

23.01.2020 | Life Sciences

Preventing metastasis by stopping cancer cells from making fat

23.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>