Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue scientists: To stop cancer, keep your Icmt away from your Ras

29.03.2004


Halting the development of certain pancreatic, ovarian, colon and lung cancers may be possible with therapy based on recent Purdue University research.


These two images show the development of human cells with (above) and without (below) the normal concentration of the protein Ras in their cell membranes. The cells on the right have the protein Ras scattered throughout their cytoplasm, in contrast with the normally developed cells on the left. The absence of the enzyme Icmt prevents Ras from lodging in the membrane, where it ordinarily performs tasks vital to cellular reproduction. Purdue research suggests that preventing Icmt from interacting with Ras during the protein’s development may inhibit the runaway cell growth that is characteristic of cancer, thus leading to new approaches to treating several forms of the disease. (M. Bergo, Journal of Biological Chemistry)



By investigating a single molecule that influences cell growth, a research group in the Purdue Cancer Center, including Brian S. Henriksen, has gained new insight into the chain of events that make some cancer cells divide uncontrollably – insight that may eventually lead to a way to break that chain, stopping cancer in its tracks. The molecule, known as Icmt, has a critical role in the development of Ras, an ordinarily beneficial protein that tells a cell to divide. The research group has determined how to inhibit Icmt’s influence on Ras, without which the protein cannot develop effectively into an instigator of cell growth.

"A tumor can be seen as cells that forget to stop dividing, and misdeveloped Ras is responsible for some instances of uncontrolled growth," said Henriksen, a graduate student in medicinal chemistry and medical pharmacology in Purdue’s School of Pharmacy. "When Ras develops a mutation, it does its job incorrectly, and it becomes a hazard to the body. Our work with Icmt might lead to therapies that could stop errant Ras from causing tumors to progress."


The research was conducted by an interdisciplinary team from two Purdue departments. Co-directing the team are Christine A. Hrycyna, Walther Assistant Professor in the School of Science’s chemistry department and Richard A. Gibbs, associate professor in the School of Pharmacy’s medicinal chemistry and molecular pharmacology department. Jessica L. Anderson (chemistry) and Henriksen are the principal graduate students involved in the project.

Henriksen will present the group’s results at 6 p.m. Sunday (3/28) at the 227th national meeting of the American Chemical Society in Anaheim, Calif.

Ras is a key protein that signals the body’s cells to begin or cease dividing, but for Ras to develop into its complex final form, it undergoes a lengthy chain of modifications that must play out correctly if the protein is ultimately to function properly.

Ras has long been known to be associated with cancer, as it is the incorrectly modified, or mutated, Ras that is behind the uncontrolled cell growth within many cancers. Ninety percent of all pancreatic cancers, one-half of all colon cancers and one-half of the most virulent lung cancers can be traced back to mutant Ras.

"If you want to fight cancer, controlling Ras is an attractive approach," Gibbs said. "Since it requires a chain of modifications, researchers have long taken the approach that if you break the chain, you can stop the cancer."

Earlier attempts to break the chain have met with difficulty because at the point scientists tried to break it in the past, there was always a "back way" – another chemical "route" the body’s enzymes could take to accomplish a given step in the process. Scientists tried to stop mutant Ras from maturing one way, only to find that they had been circumvented by another enzyme that also could get the job done.

"These troubles were actually a tribute to cellular life’s tenacity and survival techniques," Henriksen said. "Life, cancerous life included, will often find a way to overcome adversity. That is why we are so excited about Icmt – it seems to be a weak link in the chain."

The enzyme Icmt, short for isoprenyl cysteine methyltransferase, represents a link in the chain that is a bottleneck of sorts, as there appears to be no back way available to form Ras if Icmt is not present at the right point in the process. Specifically, Icmt’s task – a process called methyl esterification – is to add a small chemical "cap," called a methyl group, to the larger Ras molecule. Without this methyl cap, Ras is unable to anchor itself in the plasma membrane that surrounds a cell, where it must lodge if it is to effect growth commands. So Gibbs and Hrycyna’s labs joined forces to block the biochemical activity of Icmt with small drug molecules, preventing the methyl esterification of Ras and effectively breaking its ability to localize to the plasma membrane.

"This effort depended on both labs," Anderson said. "The Gibbs laboratory brought synthetic expertise, and the Hrycyna laboratory brought large quantities of the protein and the expertise to assay the effects of the inhibitors."

Other groups have shown recently that this lack of a methyl cap causes Ras to localize in the wrong region of the cell and, importantly, results in a Ras protein that cannot support cancerous growth.

"These findings are terrific news for our efforts," said Hrycyna. "If our inhibitor molecules directed at stopping or slowing the activity of Icmt in tumor cells are effective, we should be able to stop the growth of Ras-based cancers."

Hrycyna said she believed the discovery could ultimately throw a wrench into cancer’s operation, but that it was still too early to predict victory.

"We have succeeded in stopping Ras at the protein level and are just beginning to work with whole cells," she said. "This is very different from getting results in animals, and we’re still a long way from human trials. No one should look for this to cure cancer anytime soon, though we are extremely encouraged by these initial results."

But to move the process toward the goal of curing cancer, the group plans to look into other ways of altering Icmt to increase the effect.

"Other ways of changing Icmt might make it even more potent at stopping the development of Ras," Henriksen said. "We’d like to look at all our options and combine them into the most potent inhibitor we can manage – that’s a good goal for the near future."

This research is sponsored in part by a collaborative grant to Gibbs and Hrycyna by the Indiana Elks and the Purdue Cancer Center.

The research group is associated with the Purdue Cancer Center. One of just eight National Cancer Institute-designated basic research facilities in the United States, the center attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Brian S. Henriksen, (765) 496-2727, loxarr@hotmail.com
Christine Hrycyna, (765) 494-7322, hrycyna@purdue.edu
Richard Gibbs, (765) 494-1456, rgibbs@purdue.edu
Jessica Anderson, jeanders@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040328.Henriksen.ras.html

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>