Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making smart drugs that deliver the right kind of punch

24.03.2004


It’s a bitter irony of cancer therapy: treatments powerful enough to kill tumor cells also harm healthy ones, causing side effects that diminish the quality of the lives that are saved.


Nanoparticles depicted here among cells (green) show potential as targeted anti-cancer therapeutics.
Image: Paul Trombley, University of Michigan Center for Biologic Nanotechnology



Researchers at the University of Michigan’s Center for Biologic Nanotechnology hope to prevent that problem by developing "smart" drug delivery devices that will knock out cancer cells with lethal doses, leaving normal cells unharmed, and even reporting back on their success. A graduate student involved in the multidisciplinary project will discuss her recent work---zeroing in on characteristics that make the devices most effective---at a meeting of the American Physical Society in Montreal, Quebec, March 23.

The U-M group is using lab-made molecules called dendrimers, also known as nanoparticles, as the backbones of their delivery system. Dendrimers are tiny spheres whose width is ten thousand times smaller than the thickness of a human hair, explains physics doctoral student Almut Mecke. "These spheres have all sorts of loose ends where you can attach things---for example, a targeting agent that can recognize a cancer cell and distinguish it from a healthy cell. You can also attach the drug that actually kills the cancer cells. If you have both of these functions on the same molecule, then you have a smart drug that knows which cells to attack."


Mecke’s part of the project focuses on finding out how to get dendrimers into cancer cells without disrupting healthy cells. Previous work had shown that high concentrations of dendrimers are toxic---even without their cancer drug cargo---but no one was sure why that was or what could be done about it. Mecke used an atomic force microscope---a device so sensitive it can take pictures of single molecules---to spy on interactions between dendrimers and membranes similar to those that surround living cells.

The atomic force microscope is something like a phonograph with a motion detector attached to its needle. "As the tip moves across the surface, you can detect its movement each time it hits a bump," Mecke said. "If you scan the surface, line by line, and you record the motion of the tip, you get a three-dimensional image of the surface," where each bump is an individual molecule. By taking a series of pictures and putting them together into a movie, Mecke could watch dendrimers in action. What she saw was that "certain kinds of dendrimers disrupt membranes by literally punching holes in them."

That wasn’t the kind of punch the researchers wanted to deliver, so they tried tinkering with the dendrimers to see if they could prevent the damage. "Dendrimers usually have a charge, and so do cell membranes," Mecke said. "It’s the interaction between those charges that causes dendrimers to bind to cell membranes and disrupt them. What our group found is that if you modify the surface of the dendrimers chemically, they become uncharged" and no longer beat up on membranes.

Other research at the center showed that charged dendrimers are just as likely to enter healthy cells as cancer cells---a habit that makes them undesirable for cancer therapy---but that uncharged dendrimers don’t invade cells at all unless they have cancer-detecting targeting agents attached. "We can show that, with the targeting molecule attached, an uncharged dendrimer goes into cancer cells---and only cancer cells---and that’s what we want," Mecke said.

Early results of studies with mice show that the nanoparticle drugs do treat cancer effectively with fewer side effects than conventional chemotherapy drugs, just as the researchers had hoped. "It’s nice to see how everything fits together---my work with the model membrane, my colleague’s work with cell culture and other people’s work with the animal studies," Mecke said. Next, the researchers hope to add more functions to their dendrimer-drug devices, such as biosensors that can report on cancer cell death, indicating how successful a particular treatment has been.

Mecke collaborated on the work with U-M researchers Seungpyo Hong, a graduate student in the macromolecular science and engineering center; Anna Bielinska, a research investigator at the Center for Biologic Nanotechnology; Mark Banaszak Holl, associate professor of chemistry; Bradford Orr, professor of physics; and professor James Baker, director of the Center for Biologic Nanotechnology. Funding was provided by the National Cancer Institute’s Unconventional Innovations Program. The study is one of several major research programs under way in the U-M Center for Biologic Nanotechnology---a multi-disciplinary group that focuses on biologic applications of nanomaterials. Baker, the Ruth Dow Doan Professor of Biologic Nanotechnology in the U-M Medical School, is the study’s principal investigator.

Nancy Ross Flanigan | University of Michigan
Further information:
http://www.umich.edu/news/index.html?Releases/2004/Mar04/r032304

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>