Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rb protein’s role in retina development is key to understanding devastating eye cancer

03.03.2004


Data from unique gene function studies show Rb is required for proliferation of retinal cells and development of the light-sensitive rods and gives hints for improving treatment of retinoblastoma



The finding that a tumor-suppressor protein called Rb is required for proper development of the mouse retina is a major step toward understanding why some children develop the devastating eye cancer called retinoblastoma. This discovery should eventually help scientists design a better treatment for this disease, according to investigators at St. Jude Children’s Research Hospital. An article about this research is published in the Feb. 29 issue of Nature Genetics.

The St. Jude team showed that Rb limits the proliferation of immature retinal cells so the retina develops to a normal size. The Rb protein also prompts specific cells to develop into light-sensitive cells called rods.


The study results also offer clues to solving a long-standing paradox, according to Michael A. Dyer, Ph.D., an assistant member of the Department of Neurobiology and senior author of the Nature Genetics article.

"Children who lack the gene for Rb are at high risk for developing retinoblastoma, yet mice that also lack the Rb gene do not develop the disease," Dyer said. "The first step to solving that paradox and understanding why mice without the Rb protein don’t get retinoblastoma is figuring out what that protein does during normal mouse development. Our study was that first step. What we’re learning could eventually help us to block the molecular signals that trigger retinoblastoma in children."

Understanding the development of tissues and organs can also help researchers understand why certain types of pediatric tumors occur. The study provides strong evidence that retinoblastoma is a developmental tumor, caused by a genetic abnormality in a tissue or organ present in the developing embryo. Following birth, this abnormality triggers cancer in that tissue or organ during infancy or childhood.

The St. Jude study also broke new ground in the study of retinal development by overcoming a major obstacle blocking earlier researchers from studying the role of Rb in mice lacking this gene. Normally, such studies would be done in Rb "knockout" mice, in which the Rb gene had been artificially eliminated by researchers. But Rb knockout mice die while still embryos, making it impossible to study the effect of this mutation on the developing retina.

However, Dyer’s team was able to demonstrate the critical roles the Rb protein plays in retinal development by using several unique genetic approaches representing important advances in the study of gene function. These techniques included methods for knocking out Rb from retinal cells that can be studied in a laboratory dish, as well as methods for knocking out Rb in single retinal progenitor cells so the effect of this mutation could be studied in both embryos and newborn mice. A progenitor cell is a "parent" cell that divides and multiplies, giving rise to specific types of cells.

One way the researchers solved the problem of embryos dying from lack of Rb was by taking advantage of the fact that the retina is still developing in newborn mice. The team used a virus to insert a gene for E1A--a protein that inactivates Rb--into newborn mice. The retinas in these newborn mice grew abnormally large and failed to develop rods.

"Our work has also included efforts to develop a mouse model that has the same genetic mutations as those found in humans with retinoblastoma, yet permit the mouse to develop and be born," Dyer said. "This will further enhance our understanding of this devastating cancer and allow us to test new treatments that will spare children with this cancer from losing one or both eyes."

Other authors of the article are Jiakun Zhang and Johnathan Gray (St. Jude); Sheldon Rowan and Constance L. Cepko (Howard Hughes Medical Instutite, Harvard Medical School, Boston); and Xumei Zhu and Cheryl M. Craft (University of Southern California, Los Angeles). This work was supported in part by NIH, the National Cancer Institute and ALSAC.


St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>