Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New imaging technique developed to identify breast cancer

02.03.2004


Researchers at Johns Hopkins have for the first time used a chemical marker detected by proton magnetic resonance spectroscopic imaging (MRSI) to successfully diagnose breast cancer. The diagnostic technique produces pictures of choline within breast tumors.



In the study, researchers from the Russell H. Morgan Department of Radiology and Radiological Science at Hopkins demonstrated that choline signals analyzed by MRI were significantly elevated in malignant tumors in 15 of 18 patients studied. Three of the cases could not be included because of technical failures such as patient movement or computer failure during the scanning procedure.

The results are published in the December-January issue of the Journal of Magnetic Resonance Imaging.


Scientists have long known that cancers contain elevated levels of choline, a product of membrane synthesis, but the Hopkins study is believed to be the first to demonstrate its value in accurately identifying breast tumors.

MRSI of the breast does not appear likely to be cost-effective as a routine screening tool for breast cancer, but may prove to be a viable, noninvasive alternative to biopsy in cases with positive mammography or clinical breast exam results, says Michael A. Jacobs, Ph.D., the lead researcher for the Hopkins study. "What MRSI does provide is information about the molecular environment of breast tumors, which also may be useful in designing therapeutic interventions for patients."

Proton magnetic resonance imaging uses the water content in tissue to produce images by measuring signals emitted after subjecting the tissue to high magnetic fields, but provides no information on the chemical or molecular aspects of the tissue being imaged. Combining proton MRI with spectroscopy allows the scientists to differentiate intracellular components of the cell and signals emitted by certain biochemicals, such as choline.

In the study, 15 patients who had been referred for MRI evaluation after previous examination had revealed breast tumors underwent regular breast MRI to identify the lesion. These studies were followed by MRSI scanning to determine if choline signals in the tumors could be adequately imaged using spectroscopy. Biopsies performed after the imaging revealed that eight of the tumors were malignant carcinomas and seven were benign. MRSI showed elevated choline levels in all eight of the malignant tumors.

"These data are proof of principle, and strongly suggest that MRSI can serve as an important adjunct to the routine MRI scan that may aid physicians in making a diagnosis of breast cancer," says Jacobs. "We can envision a time when this procedure may even replace the need for biopsy in some cases and provide the basis to follow treatment strategies in certain cases of breast cancer. However, more research is needed to fully understand the potential impact of these findings."


Johns Hopkins Medical Institutions’ news releases are available on an EMBARGOED basis on EurekAlert at http://www.eurekalert.org and from the Office of Communications and Public Affairs’ direct e-mail news release service. To enroll, call 410-955-4288 or send e-mail to bsimpkins@jhmi.edu.

Gary Stephenson | JHMI
Further information:
http://www.hopkinsmedicine.org/Press_releases/2004/03_01_04.html
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>