Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inhibition of insulin-like growth factor receptor-1 as promising anticancer therapeutic

27.02.2004


Scientists report that an unlikely molecule has emerged as an attractive target for development of therapeutics aimed at a diverse spectrum of tumors, including some malignancies that are resistant to conventional therapies. Two studies published online in Cancer Cell demonstrate that the insulin-like growth factor 1 receptor (IGF-1R) is required for the survival of tumor cells and provide direct evidence that inhibition of IGF-R1 using selective small molecules represents a novel potential anticancer treatment.



Extensive studies have suggested that IGF-1R plays a role in the development of human cancers. IGF-1R is present in a broad range of tumor types including multiple myeloma, lymphoma, leukemia, and breast, lung, prostate, and colon cancers. However, IGF-1R has not been viewed as a likely target for cancer therapeutics because many normal cells also contain the protein. Research scientists from Dana-Farber Cancer Institute in Boston and Novartis Institutes for Biomedical Research Basel demonstrate that IGF-1R inhibition using a variety of methods had potent antitumor effects against many types of cancer cells grown in the laboratory, including cells that are resistant to conventional cancer therapeutics.

Molecular analyses demonstrated that IGF-1R inhibition impacts multiple intracellular signals related to cell proliferation or tumor development and provides possible mechanisms to explain how IGF-1R inhibition can make tumor cells more sensitive to conventional chemotherapy or other anticancer agents. Perhaps most significantly, IGF-1R suppresses tumor growth, prolongs survival, and enhances the antitumor effect of chemotherapy in clinically relevant mouse models of multiple myeloma and other hematological malignancies. The researchers also identify two small molecules that are selective inhibitors of IGF-1R and are active anticancer agents against tumors that contain IGF-1R. These small molecules represent highly attractive potential therapeutics.


According to study author Dr. Constantine S. Mitsiades of Dana-Farber, "These results suggest that IGF-1R function is critically required for tumor cell survival, but dispensable for survival of normal cells in adult animals. The preclinical activity of IGF-1R inhibitors against a broad spectrum of tumor cells and, importantly, their ability to sensitize tumor cells to a wide range of anticancer agents, highlight the major role of IGF-1R signaling for human malignant cells, and suggest that the molecular pathway of IGF-1R is an attractive potential target for development of anticancer therapeutics."


Constantine S. Mitsiades, Nicholas S. Mitsiades, Ciaran J. McMullan, Vassiliki Poulaki, Reshma Shringarpure, Masaharu Akiyama, Teru Hideshima, Dharminder Chauhan, Marie Joseph, Towia A. Libermann, Carlos Garcia-Echeverria, Mark A. Pearson, Francesco Hofmann, Kenneth C. Anderson Andrew L. Kung: "Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies and solid tumors"

Carlos García-Echeverría, Mark A. Pearson, Andreas Marti, Thomas Meyer, Juergen Mestan, Johann Zimmermann, Jiaping Gao, Josef Brueggen, Hans-Georg Capraro, Robert Cozens, Dean B. Evans, Doriano Fabbro, Pascal Furet, Diana Graus Porta, Janis Liebetanz, Georg Martiny-Baron, Stephan Ruetz, Francesco Hofmann: "In vivo anti-tumour activity of NVP-AEW541 - A novel, potent and selective inhibitor of the IGF-IR kinase"

Published online 26 February 2004; Cancer Cell, Volume 5, Number 3, March 2004.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>