Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mix of Chemicals Plus Stress Damages Brain, Liver in Animals and Likely in Humans

27.02.2004


Mohamed B. Abou-Donia, Ph.D., Professor, Pharmacology and Cancer Biology; Professor, Neurobiology
CREDIT: Duke University Medical Center


Stress is a well known culprit in disease, but now researchers have shown that stress can intensify the effects of relatively safe chemicals, making them very harmful to the brain and liver in animals and likely in humans, as well.

Even short-term exposure to specific chemicals -- just 28 days -- when combined with stress was enough to cause widespread cellular damage in the brain and liver of rats, said Mohamed Abou Donia, Ph.D., a Duke pharmacologist and senior author of the study.

Results of the study were published in the Feb. 27, 2004, issue of the Journal of Toxicology and Environmental Health.



Abou Donia’s study was designed to reproduce the symptoms of Gulf War Syndrome, a disorder marked by chronic fatigue, muscle and joint pain, tremors, headaches, difficulties concentrating and learning, loss of memory, irritability and reproductive problems. The Gulf War Syndrome symptoms have been difficult to explain because veterans outwardly appear healthy and normal, said Abou Donia. Likewise, the chemically exposed animals in Abou Donia’s studies looked and behaved normally.

But a decade of neurologic research has revealed widespread damage to the brain, nervous system, liver and testes of rats exposed to 60 days of low-dose chemicals -- the insect repellant DEET, the insecticide permethrin, and the anti-nerve gas agent pyridostigmine bromide. These are the same drugs that the soldiers received during the 1990 - 1991 Persian Gulf War, and Abou Donia’s rats were exposed to the same levels -- in weight adjusted doses -- as the soldiers were reportedly given.

Now, Abou Donia has demonstrated that the combination of stress and short-term exposure to chemicals (28 days) can promote cellular death in specific brain regions and injury to the liver. Moreover, the chemical trio combined with stress caused damage to portions of the brain where its protective blood-brain barrier was still intact.

The latter finding suggests that the chemicals permeated the protective barrier in one region, then leaked into other regions of the brain where the barrier remained intact. The ability of chemicals to leak from one area of the brain to another holds the potential for much greater damage to occur to the entire brain.

Brain regions that sustained significant damage in this study were the cerebral cortex (motor and sensory function), the hippocampus (learning and memory) and the cerebellum (gait and coordination of movements). Abou Donia’s earlier studies demonstrated severe damage to the cingulate cortex, dentate gyrus, thalamus and hypothalamus.(The thalamus is the major relay for visual and auditory information going to the cortex and is also responsible for subjective feelings. The hypothalamus regulates metabolism, sleep and sexual activity, as well as control of emotions.)

Abou Donia’s team found a significant number of dead or dying brain cells in all of these brain regions, as well as major alterations to brain chemicals that are necessary for learning and memory, muscle strength and body movement. Stress alone caused little or no brain injury in the rats, nor did the three chemicals given together in low doses for 28 days.

"But when we put the animals under moderate stress by simply restricting their movement in a plastic holder for five minutes at a time every day, the animals experienced enough stress that it intensified the effects of the chemicals dramatically," said Abou Donia.

Soldiers in the Gulf War were likely under stress 24 hours a day for weeks or months at a time, a scenario which could explain the origins of their diverse physical and cognitive complaints, said Abou Donia.

"The brain deficits we found in rats reside in specific areas of the brain that we can’t measure in living humans," said Abou Donia. "This is why the deficits are so difficult to assess clinically and why animal studies are so critical to understanding the cellular damage."

In addition to brain injuries, the Duke study found unexpected damage to the liver, including swollen cells, congested blood vessels and abnormal fatty deposits that diminish the liver cells’ function. Liver cells also showed reduced activity of an important enzyme -- BuCHE -- that helps rid the body of some toxic substances. Neither stress by itself nor chemicals alone had any impact on BuCHE levels, but the combination did.

Such damage to the liver can reduce its ability to rid the body of toxic substances -- its primary function as a vital organ. And, the less effectively the liver filters out toxic substances, the more the chemicals can concentrate in the brain and nervous system, he added.

Finally, the study showed that stress plus chemicals increased the amount of destructive molecules in the brain called reactive oxygen species -- also known as oxygen free radicals. Reactive oxygen species are produced by the body as it metabolizes various substances in the presence of oxygen.

Reactive oxygen species attack DNA, RNA and proteins, causing cellular and membrane damage. Normally, the body removes these chemicals from the body and the brain. But excessive production of reactive oxygen species can overwhelm the body’s ability to dispose of them.

"In our study, there was an increase in reactive oxygen species. We think that either the three chemicals and stress directly produce these free radicals, or the chemicals impede the body’s ability to get rid of them," said Abou Donia.

Becky Levine | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7433

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>