Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB discovery may accelerate new treatment for global health problem

25.02.2004


The University of California, Santa Barbara announced today that it has donated all rights to a patent that covers the novel use of an established class of cardiovascular medicines as a potential new drug against a global parasitic disease. The Institute for OneWorld Health, a nonprofit pharmaceutical company based in San Francisco, will use the UCSB discovery and the wealth of data associated with the medicines to accelerate drug development for treatment of schistosomiasis.



Two UCSB researchers discovered that calcium channel blockers may prove to be an inexpensive alternative for controlling schistosome infection, a serious global health problem that afflicts more than 200 million people annually in developing nations. An estimated 200,000 people, many of them older children, die every year from schistosomiasis. Many more suffer chronic damage to vital organs, including the liver and bladder.

The inventors are Mark Walter, a research biologist, and Armand Kuris, professor of biology. "Calcium channel blockers look very promising for the treatment of schistosomiasis, which is a devastating disease," said Kuris, an expert in parasitology and associate provost of the College of Creative Studies. Physicians routinely prescribe calcium channel blockers to treat high blood pressure, correct abnormal heart rhythms, treat panic attacks and bipolar disorder, and prevent migraine headaches.


"We know that the drugs are safe for people," said Kuris. "They are available, and not terribly expensive. For a tropical disease that is very, very important. We are gratified by OneWorld Health’s interest in our discovery, and confident in its ability to develop this inexpensive treatment for schistosomiasis for children in rural villages throughout the world."

OneWorld Health partners with pharmaceutical and biotechnology companies, universities, government agencies, and global health advocates to develop compounds or medicines that exhibit promise in treating developing world diseases. Its strategy is to secure intellectual property rights to innovations that might not otherwise be developed.

"The generous donation of this UCSB patent is a sterling model for other academic and biopharmaceutical organizations seeking to contribute to global health," said Victoria G. Hale, CEO of OneWorld Health. "We are excited at the prospect of creating a new use for these drugs. Their well-documented safety and effectiveness could reduce the number of years it might take to bring a new treatment to people with schistosomiasis." Hale is an expert in the treatment of tropical infectious diseases and drug development, and has had experience at the Food and Drug Administration and Genentech.

About Schistosomiasis

For more than 30 years, scientists have attempted to develop a vaccine against schistosomiasis with no success. The parasitic flatworm infects more than 200 million people worldwide, with three times that many individuals at risk for infection.

Although the schistosome life cycle also involves an invertebrate host, the parasite is not transmitted through the bite of an insect, but rather develops within freshwater snails. After exiting from the snail vector, schistosome larvae swim along until they contact a human host bathing or working in the water. They penetrate the skin and subsequently migrate through the blood vessels until finally establishing residence in veins of the intestines or urinary bladder. The adult male and female worms pair, mate, and produce large numbers of eggs, some of which are excreted in either feces or urine and end up in the water supply, where they hatch and complete the cycle by infecting new snail hosts. Those eggs that are not excreted become trapped in the tissues of the liver, spleen, intestine and bladder, where they become calcified. Over time the accumulation of thousands of eggs causes severe and irreversible damage to these organs.

A number of existing drugs treat schistosomiasis by killing the adult worms, but side effects can occur and none of the treatments provides lasting immunity. In fact, reinfection after anti-schistosomal drug treatment is fairly common, according to the researchers, because people return to infected water sources. The widespread and repeated treatment of people with these drugs has also resulted in the appearance of drug resistant strains of schistosomes. Moreover, the cost of drug treatment is beyond the reach of many Asian, African, and Latin American countries.

Mark Walter decided to attack schistosomiasis by attacking the ability of the worm to produce eggs. By investigating the physiology of schistosome egg production, Walter and Kuris found that these parasites may need calcium to reproduce. They discovered that calcium channel blockers, medicines that slow the movement of calcium into the cells, suppressed the production of eggs by the schistosomes when tested in vitro. The researchers explained that if schistosome egg production in humans could be suppressed by this type of treatment, then both the pathology of the disease and the continuation of the parasite lifecycle could be halted. The presence of the nonreproductive worms may also help infected people keep their immunity to reinfection.


The Institute for OneWorld Health, a nonprofit pharmaceutical company, advances global health by developing new, affordable medicines for infectious diseases that disproportionately affect people in the developing world. OneWorld Health accomplishes this through an entrepreneurial business model in which its staff of experienced pharmaceutical scientists identifies promising drug leads and drives their development from pre-clinical studies to clinical trials through regulatory approval. The Institute for OneWorld Health, headquartered in San Francisco, is a tax-exempt 501(c)(3), U.S. corporation.

Note to Editors: For more information about this discovery, please contact Mark Walter at (805) 637-7052, e-mail: walter@lifesci.ucsb.edu or Armand Kuris at (805) 965-0931 or 893-3998, e-mail: kuris@lifesci.ucsb.edu

Paul Desruisseaux | EurekAlert!
Further information:
http:// www.oneworldhealth.org
http://www.ucsb.edu/

More articles from Health and Medicine:

nachricht Candidate Ebola vaccine still effective when highly diluted, macaque study finds
21.10.2019 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Autism spectrum disorder risk linked to insufficient placental steroid
21.10.2019 | Children's National Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>