Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein abundant in human tumors confers resistance to anticancer drugs

24.02.2004


Scientists report that a protein made in excess in the majority of human tumors plays a significant role in the ability of cancer cells to resist traditional treatments. The research study, published in the February issue of Cancer Cell, provides new insight into the biology of cancer cells and may have a significant impact in the design of future, more effective cancer treatments.



Tumor formation results when cells divide in an unregulated fashion and many chemotherapeutic agents are thought to work by inducing apoptosis, a complex process of cell death, to halt proliferation of malignant cells. It is known that most cancer cells do not undergo apoptosis under many stress conditions that would trigger apoptosis in healthy cells, including chemotherapeutic treatments. However, the details of the biology underlying drug action and why some cancers are drug resistant are not well understood. A research team led by Dr. Donald Kufe from the Dana-Farber Cancer Institute in Boston, Massachusetts examined the role of a protein called MUC1 in drug resistance in cancer cells. The level of MUC1 is substantially elevated in most human tumors. Normal levels of MUC1 are thought to play a role in cell repair after damage, inhibiting cell death and promoting generation of new cells. The researchers found that high levels of MUC1 protein, as is found in cancer, reduces traditional apoptosis signals, blocks the apoptotic response to toxic anticancer agents and confers resistance to treatment in animal tumor models. Further, reduction of MUC1 in lung and breast cancer cells is associated with increased sensitivity of these cells to anticancer drugs.

The researchers conclude that abnormal overabundance of MUC1 in human tumors promotes cancer cell survival, even in the presence of agents that normally induce cancer cell death. "We believe that our findings will lead to a better fundamental understanding of cancer biology and treatment. We have uncovered a mechanism in which what appears to be a normal physiological mechanism to protect healthy cells against apoptosis during stress-induced repair could be exploited by human tumors to survive under adverse conditions. In addition, because MUC1 reduces the normal apoptotic response to DNA damaging agents, it is an attractive target for design of future cancer therapeutics," explains Dr. Kufe.



Jian Ren, Naoki Agata, Dongshu Chen, Yongqing Li, Wei-hsuan Yu, Lei Huang, Deepak Raina, Wen Chen, Surender Kharbanda, and Donald Kufe: "Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents"

Published in Cancer Cell, February 2004, Volume 5, Number 2, pages 163-176.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>