Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria: Plasmodium togetherness a strategy for breeding success

20.02.2004


Malaria, which infects 600 million people in the world and leads annually to 2 million deaths, is the most widespread of infectious diseases. The pathological agent is a microscopic parasite of the Plasmodium genus which develops inside the host’s erythrocytes.

Plasmodia go through a series of asexual reproduction cycles before a transition takes place from asexual stages to production of sexual cells, the gametocytes or pre-gametes, in the host blood. The females of Anopheles, the mosquito vector, ingest blood and gametocytes during a nocturnal feed on human skin. The meal reaches the mosquito’s stomach where Plasmodium sexual reproduction takes place. An encounter and subsequent binding between a male and a female gametocyte produces a zygote which will give rise to infectious forms. These migrate up to the mosquito salivary glands. From there they are transmitted to humans during a second blood meal.

Experimental gametocyte counts in the blood ingested by mosquitoes that had bitten volunteers naturally infected with Plasmodium falciparum showed that these sexual forms are overdispersed, in other words they have a heterogeneous distribution in the mosquito stomach. Their numbers vary between the different blood meals taken on the same volunteer, a feature previously observed in the case of large parasites (macroparasites), such as microfilariae (250 microns).


The IRD team is researching Plasmodium biology and the modes of transmission from the vector to humans and from humans to the vector. They used a computerized simulation model (the individual based model) of gametocyte behaviour in human blood circulation and at the moment of ingestion by the mosquitoes, aiming to find an explanation for this heterogeneity and its role in the parasite’s reproduction.

In the microfilariae, nematode agents of filariases, heterogeneity in the number of parasites ingested by the mosquitoes results from queues of varying lengths they form in the capillaries. Thus a similar aggregation event might occur in Plasmodium gametocytes, even if their very small size (10 microns) theoretically predestine them for a homogeneous distribution in the mosquito stomach. Simulations tested this hypothesis, each assuming different quantities of circulating gametocytes. They showed that the heterogeneous distribution of gametocytes ingested by the mosquito is no chance feature but is density-dependent, increasing with the gametocyte density. This heterogeneity could result from gametocyte togetherness, or aggregation, in the blood capillaries, the clusters so formed persisting in the mosquito stomach where sexual reproduction takes place. Field experiments conducted in Senegal, then others in Cameroon, on blood ingested by mosquitoes from naturally infected volunteers have confirmed these results, thus validating the model the research team adopted.

Comparison of the behaviour of free and clustered gametocytes has illuminated an essential life-cycle characteristic of Plasmodium, the most extensively studied malaria parasite. Aggregation is a means of optimizing the zygote (fertilized ova) production, which results from the encounter and binding between two gametocytes of opposite sex, and therefore of enhancing the production of infectious forms and the parasite’s reproduction rate. Bound in the human host’s peripheral capillaries, male and female gametocytes ingested by a mosquito increase the likelihood of their meeting inside the propitious breeding ground the fly’s stomach provides. The gametocytes differentiate into gametes that possess no particular means of attraction, so this lover’s ritual of clustering is a sophisticated parasite reproduction strategy which compensates for its gametes’ lack of attraction mechanism. Further research is planned, with three main objectives: refining the gametocyte behaviour model; finding out the triggering mechanism behind the cell binding events, well known in the asexual forms which cause cerebral malaria; and identifying the factors that influence the cluster formation.

Marie Guillaume – DIC
Translation : Nicholas Flay

Marie Guillaume | alfa
Further information:
http://www.ird.fr/fr/actualites/fiches/2004/fiche194.htm

More articles from Health and Medicine:

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>