Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein helps immune system mount ’instant strike’ against deadly flu viruses

19.02.2004


Discovery suggests that a ’live virus’ vaccine may offer best defense against avian flu

Researchers at the University of Rochester have identified a protein in the immune system that appears to play a crucial role in protecting against deadly forms of influenza, and may be particularly important in protecting against emerging flu viruses like the avian flu. The researchers believe that a vaccine made with a live but weakened strain of flu virus – such as the inhaled flu vaccine introduced last year – may activate this part of the immune system and offer the best defense against avian flu.

In a paper being published in the February 20 issue of Immunity, the researchers report that a protein called VLA-1 enables the immune system to develop "peripheral immunity" by anchoring millions of virus-killing cells to tissues along the airways and lungs, where flu enters the body. The protein holds the cells in place and helps them survive there for long periods – sometimes years – where they stand ready to mount an immediate attack on the flu virus.



In a series of experiments, mice whose T cells were able to make the protein were able to develop peripheral immunity, and 90 percent of them survived after being infected with a potentially deadly strain of flu. Mice with T-cells engineered to lack the protein failed to develop peripheral immunity, and only 60 percent of them survived after being infected with the same flu virus.

The findings demonstrate that when confronted by a potentially deadly flu strain, an effective first strike by T cells in the lungs can mean the difference between life and death. To immunologist David Topham, Ph.D., assistant professor of Microbiology and Immunology at the University of Rochester and lead author of the study, the findings reveal something else: a shortcoming in the world’s most widely administered flu vaccines. Those vaccines, made with fragments of "killed" viruses, help the immune system make antibodies against the flu virus but do not induce peripheral immunity.

The trouble with antibodies, says Topham, arises when a flu virus changes, either by mutating or by swapping genes with another virus – a scenario that experts fear would lead to a pandemic of avian flu. When a virus changes, antibodies often have difficulty recognizing the new virus and mobilizing the immune system to attack. And even if they do, it takes two to three days for antibodies to stimulate the production of T cells, and for those cells to begin attacking the virus. Unlike antibodies, T cells are much more effective at recognizing viruses that have changed, and they can attack instantly.

"In a lethal form of flu, like avian flu has the potential to be, you may not have three days. A lethal infection can gain such a foothold in that time that it can become very difficult or impossible for the immune system to overcome it," said Topham.

Topham believes that to protect people against an outbreak of avian flu, vaccine developers should switch to a vaccine made with a live but weakened flu virus. Such vaccines are thought to more closely mimic a natural encounter with the flu virus and are more likely to induce peripheral immunity, which might deliver an instant strike against the virus as the infection begins.

"When confronted by a deadly flu virus, the ability to attack it instantly, as soon as the virus hits the lungs, might mean the difference between life and death," said Topham. "Our goal should be to design a vaccine that helps the immune system produce peripheral immunity. A vaccine made from live virus offers the best chance of accomplishing this."


The research was funded by the National Institutes of Health, and conducted at the David H. Smith Center for Vaccine Biology, part of the Aab Institute of Biomedical Sciences at the University of Rochester Medical Center.

Chris DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>