Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells can compress blood vessels, block entry of drugs

19.02.2004


MGH studies add to understanding of tumor physiology, suggest treatment strategies



A growing tumor needs an increased blood supply for its proliferating cells. But the implications of tumor-related angiogenesis – the growth of new blood vessels – are much more complex than many investigators have realized. Although these new vessels are required to nourish the tumor itself, they are disorganized and abnormal and can actually block therapeutic agents from reaching malignant cells.

In the Feb. 19 issue of Nature, researchers from Massachusetts General Hospital (MGH) describe how proliferating cancer cells compress both blood and lymphatic vessels within tumors. The findings suggest new strategies for improving the success of cancer treatment. Related studies in the February issue of Nature Medicine provide more information about improving the delivery of anticancer drugs to tumor cells.


"We’ve known for several years that internal pressure can make it difficult for many drugs to penetrate into a tumor," says Rakesh Jain, PhD, director of the Edwin Steele Laboratory in the MGH Department of Radiation Therapy, senior author of the Nature and Nature Medicine papers. "Much of our work has focused on fluid pressure within tumors, but this was the first look at solid pressure."

As described in the Nature study, fluid pressure had been assumed to be the force compressing vessels within tumors, but actual fluid pressures inside both tumors and their blood vessels are almost equal. The MGH team investigated whether solid pressure exerted by proliferating cancer cells could compromise blood supply in the same way that stepping on a hose cuts off the flow of water. Using human tumors implanted in mice, the researchers administered diphtheria toxin, which kills tissue from humans but not from mice, to selectively destroy cancer cells.

Analysis of the toxin-treated tumors found that both blood vessels and lymphatic vessels looked much more open than did vessels from untreated tumors, which were largely collapsed. However, although the treated blood vessels appeared to be functioning nearly normally, treated lymphatic vessels were not functional. "Some of the new questions we need to investigate are why decompressed lymphatics do not function, what role vessel decompression may play in tumor growth and metastasis, and how we can use vessel decompression to improve cancer treatment," say Jain, who is Cook Professor of Tumor Biology at Harvard Medical School.

One of the Nature Medicine papers may explain the mechanism of action behind the anti-angiogenesis drug Avastin (bevacizumab), which is currently in clinical trails for FDA approval. In a small group of patients with rectal cancer, the MGH researchers found that Avastin treatment reduces both the number and density of blood vessels within tumors, as well as reducing fluid pressures. Taken with the positive early results of the Avastin trials, this finding is the first clinical confirmation that normalizing the distorted blood supply within tumors could improve the results of therapy.

The second Nature Medicine report uses an advanced imaging technique to examine the structure of the tumor extracellular matrix, composed of connective tissues which block anticancer drugs from reaching tumor cells. The new imaging tool – two-photon fluorescence correlation microscopy – is a significantly better method of measuring the passage of molecules within the matrix. The MGH study revealed that the matrix actually has two components, one that is nearly liquid and a more viscous component that appears to be the most significant barrier to drug delivery. Targeting the viscous matrix component may also improve treatment results.

The Nature study was led by Timothy Padera of the Steele Laboratory. The Nature Medicine Avastin study was led by Christopher Willett, MD, of MGH Radiation Oncology, and the extracellular matrix study was led by George Alexandrakis, PhD, of the Steele Laboratory. All three studies were supported by the National Cancer Institute.


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, medical imaging, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>