Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells found in adults may repair nerves

18.02.2004


It used to be considered dogma that a nerve, once injured, could never be repaired. Now, researchers have learned that some nerves, even nerves in parts of the brain, can regenerate or be replaced. By studying the chemical signals that encourage or impede the repair of nerves, researchers at the University of Washington, the Salk Institute, and other institutions may contribute to eventual treatments for injured spines and diseased retinas, according to a presentation at the annual meeting of the American Association for the Advancement of Science (AAAS).



Much of this research focuses on stem cells, one of several types of general cells that can give rise to specialized cells, like neurons. It was once thought that human stem cells were only found in embryos, and in bone marrow, where they produce blood cells. But stem cells are also being found in adults, including the brain and the eye. For example, stems cells steadily replace dead neurons in the olfactory bulb, which transmits scent signals to the brain, and the hippocampal dentate gyrus, an area that organizes short-term memory.

However, the pace of stem-cell repairs in humans is slow. And in some cases, stem cells can even impede healing. Stem cells in an injured spinal cord can create a sticky scar that blocks nerve regeneration, according to Dr. Philip Horner, an assistant professor in the Department of Neurosurgery in the UW School of Medicine.


"We’ve found that the axons, the parts of the nerves that transmit signals, try to regenerate after an injury but get caught in the scar. It’s like they’re stuck in the mud," Horner said. "We’re studying ways that this process is regulated to see if it can be manipulated to promote healing. In other words, we’re looking at ways to get the axons out of the mud. One way is to make the mud less sticky by manipulating stem cells that participate in scar formation. Another is to stimulate the axons to push through the scar by providing the cut nerves with molecules that induce elongation. We’re using molecular signals called growth factors to simulate the growth of cultured nerve cells in the laboratory."

Horner and Dr. Thomas Reh, professor in the UW Department of Biological Structure, will join Dr. Fred Gage from the Salk Institute for a 12:30 p.m. session Feb. 16 on "Neural Stem Cells in Health and Disease" at the AAAS’s annual meeting in Seattle. Gage will present an overview of neural stem cells, Horner will discuss stem cells and the repair of the spinal cord, and Reh will focus on stem cells in the eye.

The same types of cells that create scar tissue in the spinal column can create new cells in the retina of the eye, especially in young animals of some species, according to Reh. The retina is a delicate light-sensitive membrane that transmits light signals to the brain. Many eyes diseases that cause blindness, such as glaucoma and as age-related-macular-regeneration, damage the retina.

Salamanders don’t get glaucoma because they can readily regenerate retinal cells. The same is true of newts, frogs, and some types of fish. "We’re trying to understand the remarkable regenerative powers of these lower vertebrates, and through this understanding, develop strategies to stimulate regeneration in the human retina," Reh said.

While salamanders can regenerate retinal cells through their life, many other species lose this ability as they age. "At some point in each species life cycle, the stem cells in the retina make a transition from a regenerative cell to a cell that will make a scar in response to injury, like the cells that cause scars in the spinal cord," Reh said. "Chickens make the transition a few weeks after hatching in most of their retina, though they retain some limited capacity to regenerate retinal cells throughout life. In rats, it’s only a matter of a few days after the cells are generated that they lose their ability to regenerate other retinal cells."

Human retinas seemingly can’t repair themselves, yet in recent studies human retinal cells have grown new neurons when cultured in the laboratory. "The hope is that many of the molecular and cellular mechanisms necessary for regeneration, that serve amphibians so well, are still in place in humans," Reh said. "Future studies from the nervous system, as well as other organ systems, should enable us to define the roadblocks in the regenerative process, and develop strategies to go around them."

Walter Neary | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>