Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The future of drug development

17.02.2004


In this month’s essay, Tim Hubbard and Jamie Love argue that we need a better way to research and develop new drugs. They contend that the existing system for drug development--rooted within the pharmaceutical industry--is inefficient and unsustainable. Drugs are too expensive and are beyond the reach of many people in the developed as well as the developing world.



The inadequacies in the current system, suggest Hubbard and Love, are a consequence of a business model that uses a single payment to cover both the costs of manufacture, marketing and sales of a drug and the cost of the research and development (R&D) carried out by manufacturers to discover it. The current system is supported by a vigorously-enforced intellectual property regime, which protects the financial interests of companies and reaches across borders so that poorer countries cannot develop cheaper versions of the drug.

Aside from the inadequate availability and high price of drugs, other unwelcome side-effects of the existing business model are a lack of information sharing amongst researchers, and a consequent reduction in the pace of discovery. There are also strong incentives to develop drugs that have little if any increase in efficacy over existing drugs--so-called me-too drugs. And it is not surprising that many of the major global health challenges, which tend to affect poorer nations, receive short shrift from companies that focus their attention on more lucrative health markets.


So what’s to be done? Hubbard and Love propose that the markets for R&D and the markets for products should be separated. Researchers and drug developers would be compensated, but not through a marketing monopoly. Large cash prizes to successful firms or non-profit drug developers, direct public sector involvement in drug development, new open collaborative development models, or government imposed research mandates would be possible economic models for funding drug development. Money could be raised and managed through taxes and traditional government institutions like the NIH, or through "bottom up" mechanisms such as employee contributions to competitive intermediates that fund R&D--analogous to pension funds--or through other approaches.

Such a system would reduce the influence of intellectual property rights, and lead to much greater openness in the area of drug research. Competition would still exist for the manufacture and distribution of drugs, but prices would inevitably drop. There are many obstacles and challenges to the development of the new drug R&D market, but Hubbard and Love believe that the economics can be worked out and will "change the world," by greatly expanding access to new medicines and promoting a more efficient system of drug development that addresses real health priorities.


Citation: Hubbard T, Love J (2004) A New Trade Framework for Global Healthcare R&D. PLoS Biol 2(2): e52 DOI: 10.1371/journal.pbio.0020052.

CONTACT:
Tim Hubbard
Wellcome Trust Sanger Institute
Cambridge, Cambridgeshire CB10 1SA
United Kingdom
44-1223-494983
th@sanger.ac.uk

Barbara Cohen | EurekAlert!
Further information:
http://www.plosbiology.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020052
http://www.plos.org/

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>