Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone released by bone marrow cells may hasten recovery from brain injury

13.02.2004


Bone marrow stromal cells release a blood vessel-dilating hormone found in the brain -- a finding that suggests the hormone may be tapped to help with recovery from stroke or other neurological injuries disrupting blood flow to the central nervous system, researchers at the University of South Florida and James A. Haley Veterans’ Hospital report for the first time. The hormone is known as brain natriuretic peptide.



The laboratory study was published in the January 2004 issue of the journal Experimental Neurology.

"We’re suggesting that transplanted bone marrow stromal cells may hasten recovery by releasing brain natriuretic peptide and other factors that improve blood flow to the brain and decrease swelling and pressure around the site of injury," said lead investigator Juan Sanchez-Ramos, MD, PhD, professor of neurology and research director at the USF Center for Aging and Brain Repair. "By helping irrigate, or restore the blood circulation to the brain, brain natriuretic factor may reduce the extent of damage from stroke or spinal cord injuries."


Researchers at USF and other institutions have demonstrated that some cells from adult bone marrow can be converted with growth factors and other agents into immature nerve cells -- both in the laboratory and following transplant into animals. Furthermore, rats suffering from stroke or other traumatic brain injury recover neurological function quicker following intravenous infusions of bone marrow stromal cells.

However, no one has proven that this recovery results from converted bone marrow cells directly replacing or repairing damaged neurons. A growing number of scientists, including Dr. Sanchez-Ramos, hypothesize that growth factors, cytokines and other substances secreted by bone marrow cells may play a more important role than first realized in recovery from neurological injuries.

The USF researchers identify bone marrow-derived brain natriuretic factor (BNP) as a potential candidate for treating stroke, spinal cord injury and other neurological damage. Although found in the brain, BNP belongs to a family of atrial natriuretic peptides, hormones made by the heart that exhibit powerful diuretic and blood pressure-lowering characteristics. In rat models of stroke, these atrial natriuretic peptides have been reported to decrease brain swelling or edema.

Human bone marrow is capable of producing significant amounts of BNP, the USF researchers demonstrated. Bone marrow stromal cells grown in the laboratory secreted levels of BNP far exceeding the amounts normally found in circulating blood and spinal fluid.

The researchers next plan to measure the effects of BNP from bone marrow cells transplanted into rats with strokes and spinal cord injuries.

Anne DeLotto Baier | EurekAlert!
Further information:
http://hsc.usf.edu/

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Proteins imaged in graphene liquid cell have higher radiation tolerance

10.12.2018 | Materials Sciences

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>