Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging technique discovered at Stanford monitors cancer cell proliferation

11.02.2004


A team of cell biologists at the Stanford University School of Medicine has developed a new imaging technique using biosensors that precisely monitor the timing of cell division. Researchers tested the technique by observing and measuring the slowdown of cell division associated with an anti-cancer drug. They believe the discovery may allow them to screen for many more anti-cancer compounds in the future.



Tissues and organs form and grow through a highly regulated process of cell division known as mitosis. Normally, cells stop dividing once they start performing specialized functions. If the process is incorrectly regulated, however, cells divide too fast or too slowly. Accelerated cell division can result in cancers that proliferate rapidly unless anti-cancer agents intervene.

To measure cell division timing, the researchers incorporated fluorescent proteins, called biosensors, into the cell nuclei. When used with a specialized microscopy technique called total internal reflection fluorescence, the biosensor glows when the nuclear membrane breaks down, passes through the surrounding cellular material and is released into the cell membrane. When genetic material is re-enclosed in the nuclear envelope of newly formed cells, the biosensor moves back into the reformed nucleus and there is no fluorescence. The effect is like a light switch being turned on and off, signaling the start and end of the cell division process, respectively.


The biosensor is a first example of new types of probes designed to observe and measure cellular processes in real time rather than just looking at before-and-after static snapshots, said Tobias Meyer, PhD, associate professor of molecular pharmacology, who led the research team. "The biosensor will be useful for discovering genes involved in cell proliferation and cancer," he said.

The technique, published in the February issue of Nature Biotechnology, allows simultaneous monitoring of up to 100 cells. Previous methods allowed researchers to observe only a single cell at a time.

"The exciting thing is the ability to screen compound libraries to discover novel cancer therapies," said Joshua Jones, a graduate student in molecular pharmacology and lead author of the study. He added that the idea of screening hundreds of thousands of potential anti-cancer compounds was previously inconceivable when researchers had to rely on techniques that monitor only one cell at a time. The group is patenting the new imaging technology.

In one experiment testing this technique, the team used rat leukemia cells that contained biosensors. The cells were then exposed to a low dosage of the anti-cancer drug Taxol to observe how it affected cell division.

After being mounted onto the glass of a special microscope, cells were hit with laser light from below. The light was angled such that after it went through the lower side of the glass, the upper side reflected it downward instead of allowing it to pass through. The light did not therefore pass through the cells on top of the glass, but still supplied enough energy to illuminate the fluorescent biosensors in their plasma membranes, allowing the researchers to quantify the timing of cell division.

This biosensor also can be used with conventional microscopy techniques and, although the resolution is not as great as with total internal reflection microscopy, these experiments allowed the researchers to observe defects in cell function as well as the timing of cell division events.

In each experiment, the researchers captured microscope images every 2 minutes then assembled them in sequence as movies, marking the onset of the various stages of cell division.

The next phase of this research, which is funded by the National Institutes of Health, will examine the use of biosensors to screen for new genes that promote cell proliferation. The team is now developing ways to automate the cell-imaging process and the analysis of the massive body of data the technique generates. "It’s going to be tricky," said Jones. "We’re probably going to have to get a computer that thinks like we do."


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Rosanne Spector | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

nachricht Infants later diagnosed with autism follow adults’ gaze, but seldom initiate joint attention
24.05.2019 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new paradigm of material identification based on graph theory

17.06.2019 | Materials Sciences

Electron beam strengthens recyclable nanocomposite

17.06.2019 | Materials Sciences

Tiny probe that senses deep in the lung set to shed light on disease

17.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>