Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destructive wizardry of Ozz-E3 ligase appears key to building skeletal muscles in embryos and adults

11.02.2004


Finding mice suggests that abnormalities of this beta-catenin protein underlie certain muscle diseases in human



The organization and stability of growing muscles in both embryonic and adult mice depends on the ability of a protein called Ozz to direct the timely destruction of membrane-bound â-catenin, according to scientists at St. Jude Children’s Research Hospital. â-catenin is one of the key proteins that orchestrates this process. Ozz directs destruction of â-catenin by assembling an active ubiquitin ligase complex, Ozz-E3, which breaks down this pool of the protein in muscle cells.

Ozz-E3’s role is to attach a chain of ubiquitin molecules to â-catenin. This process, called ubiquitination, targets protein substrates for destruction and is essential to many cellular functions during development and adult life.


The researchers also discovered that the Ozz gene overlaps another gene, which codes for an enzyme called protective protein/cathepsin A or PPCA. This enzyme is a key player in a process that breaks down certain molecules in the cellular structure called the lysosome. The Ozz gene also shares with the PPCA gene a genetic "on switch," called a promoter, which controls the expression of either gene, depending on which direction the promoter acts, says Alessandra d’Azzo, Ph.D., a member of Genetics and Tumor Cell Biology at St. Jude. d’Azzo is senior author of a report on these findings that appears in the February issue of Developmental Cell.

"Our finding of the close link between PPCA and Ozz genes might explain why some children with severe neurodegenerative disease caused by mutation of PPCA also suffer from muscle disorders. We are now studying that possibility," d’Azzo said. The St. Jude team made their discoveries using muscle tissue from both normal and genetically modified mice.

The researchers showed that the delicate balance between accumulation and removal of â-catenin at a specific cellular site, the sarcolemma — the membrane covering each muscle fiber — is achieved by the activity of the Ozz-E3 ligase. "Modulating â-catenin levels at the sarcolemma is critical for the organization of sarcomeres, the basic building units of muscle fibers, and, in turn, for the remodeling and the regeneration of skeletal and cardiac muscle," d’Azzo said.

Sarcomeres are composed in large part of two different proteins, actin and myosin. The interaction of actin and myosin pulls the ends of the sarcomere toward each other in a miniature contraction. Thousands of sarcomeres lined up in a row make a myofibril; and large bundles of myofibrils make up a muscle fiber. Muscle fibers work together to form a single muscle, whose ability to contract is based on the accumulated contractions of the many thousands of sarcomeres making up each myofibril.

"For a muscle fiber to grow, there must be a constant rearrangement of myofibrils," d’Azzo said, "and that requires the dynamic removal and replacement of membrane-bound proteins, like â-catenin, that connect the myofibrils to the sarcolemma."

The St. Jude findings indicate that the loss of Ozz function disrupts the correct assembly of sarcomeres, which in turn disrupts muscle formation. Thus, the discovery of the Ozz function during muscle remodeling and growth might help uncover the genetic cause of certain muscle diseases that occur for unknown reason and that affect children in their growing years.

This work was supported in part by NIH, a Cancer Center support grant, Phillip and Elizabeth Gross and ALSAC. d’Azzo holds an endowed chair in Genetics and Gene Therapy from the Jewelers Charity Fund; and A. John Harris was supported by grants from the New Zealand Lottery Board and Foundation for Research Science and Technology.

Other authors of the paper include Tommaso Nastasi, Antonella Bongiovanni, Yvan Campos, Linda Mann, James N. Toy, Jake Bostrom, Robbert Rottier and Christopher Hahn (St. Jude); and Joan Weliky Conaway (Stowers Institute for Medical Research, Kansas City, MO).


St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, TN, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>