Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shocking surprise: high voltage + rats = ozone, reopens power-line debate

10.02.2004


Rats subjected to extreme electromagnetic fields produce dangerous levels of the toxic gas ozone, according to a new study out of the Pacific Northwest National Laboratory that is sure to reenergize the decade-dormant debate about safety around power lines and household appliances.



It is the first experiment to conclusively link an electromagnetic field with a health-adverse chemical effect in the presence of an animal, said Steven Goheen, a scientist at the Department of Energy lab and lead author of a paper published in the current issue of the journal Bioelectromagnetics.

"All this time, we were looking in the wrong place," Goheen said. "We had been looking inside animals for an effect from the electromagnetic fields. Now it appears that the danger is in the air surrounding animals that are near a large electromagnetic field."


Electromagnetic fields are present in devices that use or carry electricity. Goheen and colleagues report that the ozone was produced when rats were present during a "corona discharge," an uncommon phenomenon in which electrons escape from a sharp surface of an electrical conductor at high voltage.

The researchers placed rats in a Plexiglas cage hooked up to a device that produced 10 kilovolts, or roughly the power of air ionizers marketed as health aids. In an empty cage, the ozone level peaked at 22 parts per billion with or without a corona discharge. When the animals were present and a centimeter from the corona source – an electrode inserted through the top of the cage – ozone levels were high, more than 200 parts per billion, or double the amount considered toxic at chronic exposure in human beings. The ozone was flushed from the cage quickly for measurements, and the rats were unharmed.

The electric field used in the rat experiments is greater than that of a casual passer-by near any high voltage power line, Goheen said, the distance being the key consideration. "Distance was one variable we measured in the rats. When they were more than about 5 centimeters away from the source, we didn’t see much effect."

This effect should be of concern only to those working much closer to power lines such as linemen or anyone else who spends many hours a day close to high voltage devices. Goheen is quick to note that such workers have more immediate concerns than whiffing a little ozone – such as electrocution and falling.

But he notes that if ozone is produced, it is possible that other so-called reactive species may be produced near human beings in the presence of high voltage and that "these results raise new questions about the relationships between electric fields and adverse biological effects."

Among the questions Goheen and colleagues are now wrestling with is what, precisely, happens to convert ambient air surrounding an animal’s electrified surfaces into its chemical cousin ozone.

In an earlier experiment, Goheen measured similar amounts of ozone in grounded water under a corona source, invoking by way of explanation something called "the Taylor cones phenomenon." A liquid surface at high field strength is unstable, with spots of slightly-higher surface charge that protrude from the surface. The tips can elongate and grow so sharp that droplets and even electrons can be ejected.

Since most mammals are mostly water and produce surface moisture in sweat glands, saliva and eyes, perhaps here is a connection. Goheen and his co-authors suggest that along with the exposed moist places, "pointed rat whiskers and hairs, as well as ears, nose, and tails, at sufficiently high field strength" contribute somehow to the discharge.

PNNL is a DOE Office of Science research center that advances the fundamental understanding of complex systems and provides science-based solutions in national security, energy, chemistry, the biological sciences and environmental quality. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-02.htm

More articles from Health and Medicine:

nachricht Inhaling air pollution-like irritant alters defensive heart-lung reflex for hypertension
19.06.2019 | University of South Florida (USF Innovation)

nachricht Nitric oxide-scavenging hydrogel developed for rheumatoid arthritis treatment
06.06.2019 | Pohang University of Science & Technology (POSTECH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

Inhaling air pollution-like irritant alters defensive heart-lung reflex for hypertension

19.06.2019 | Health and Medicine

Innovative powder revolutionises 3D metal printing

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>