Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shocking surprise: high voltage + rats = ozone, reopens power-line debate

10.02.2004


Rats subjected to extreme electromagnetic fields produce dangerous levels of the toxic gas ozone, according to a new study out of the Pacific Northwest National Laboratory that is sure to reenergize the decade-dormant debate about safety around power lines and household appliances.



It is the first experiment to conclusively link an electromagnetic field with a health-adverse chemical effect in the presence of an animal, said Steven Goheen, a scientist at the Department of Energy lab and lead author of a paper published in the current issue of the journal Bioelectromagnetics.

"All this time, we were looking in the wrong place," Goheen said. "We had been looking inside animals for an effect from the electromagnetic fields. Now it appears that the danger is in the air surrounding animals that are near a large electromagnetic field."


Electromagnetic fields are present in devices that use or carry electricity. Goheen and colleagues report that the ozone was produced when rats were present during a "corona discharge," an uncommon phenomenon in which electrons escape from a sharp surface of an electrical conductor at high voltage.

The researchers placed rats in a Plexiglas cage hooked up to a device that produced 10 kilovolts, or roughly the power of air ionizers marketed as health aids. In an empty cage, the ozone level peaked at 22 parts per billion with or without a corona discharge. When the animals were present and a centimeter from the corona source – an electrode inserted through the top of the cage – ozone levels were high, more than 200 parts per billion, or double the amount considered toxic at chronic exposure in human beings. The ozone was flushed from the cage quickly for measurements, and the rats were unharmed.

The electric field used in the rat experiments is greater than that of a casual passer-by near any high voltage power line, Goheen said, the distance being the key consideration. "Distance was one variable we measured in the rats. When they were more than about 5 centimeters away from the source, we didn’t see much effect."

This effect should be of concern only to those working much closer to power lines such as linemen or anyone else who spends many hours a day close to high voltage devices. Goheen is quick to note that such workers have more immediate concerns than whiffing a little ozone – such as electrocution and falling.

But he notes that if ozone is produced, it is possible that other so-called reactive species may be produced near human beings in the presence of high voltage and that "these results raise new questions about the relationships between electric fields and adverse biological effects."

Among the questions Goheen and colleagues are now wrestling with is what, precisely, happens to convert ambient air surrounding an animal’s electrified surfaces into its chemical cousin ozone.

In an earlier experiment, Goheen measured similar amounts of ozone in grounded water under a corona source, invoking by way of explanation something called "the Taylor cones phenomenon." A liquid surface at high field strength is unstable, with spots of slightly-higher surface charge that protrude from the surface. The tips can elongate and grow so sharp that droplets and even electrons can be ejected.

Since most mammals are mostly water and produce surface moisture in sweat glands, saliva and eyes, perhaps here is a connection. Goheen and his co-authors suggest that along with the exposed moist places, "pointed rat whiskers and hairs, as well as ears, nose, and tails, at sufficiently high field strength" contribute somehow to the discharge.

PNNL is a DOE Office of Science research center that advances the fundamental understanding of complex systems and provides science-based solutions in national security, energy, chemistry, the biological sciences and environmental quality. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.

Bill Cannon | PNNL
Further information:
http://www.pnl.gov/news/2004/04-02.htm

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>