Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria lingering in body may pose future food poisoning risks, Stanford study finds

06.02.2004


Bacteria responsible for a lethal form of food poisoning may escape the immune system by hiding out in the gall bladder of seemingly healthy people. The finding by researchers at Stanford University School of Medicine suggests that an unwitting food worker could transmit the bacteria to others by contaminating food products.



The bacteria, Listeria monocytogenes, can cause severe illness or death in people with weakened immune systems and may cause miscarriage in pregnant women. "Twenty to 40 percent of people with listeriosis" - the disease caused by Listeria infection - "die even after antibiotic treatment," said Jonathan Hardy, PhD, the study’s first author and a research associate in the Department of Pediatrics. The research is published in the Feb. 6 issue of Science.

Listeriosis causes about 500 U.S. deaths annually; pregnant women are about 20 times more likely than other healthy adults to become infected. Unlike many bacteria, Listeria is perfectly happy growing at refrigerator-like temperatures and can survive for long periods outside of its many animal hosts. It is most commonly found in foods such as soft cheeses and deli meats - products pregnant women are often told to avoid.


"To have discovered a chronic carrier state in the gall bladder of an animal model, suggesting a potential source of food contamination, is important," said senior author Christopher Contag, PhD, assistant professor of pediatrics and of microbiology and immunology. Until now, it had been thought that tainted food came primarily from infected animals or from soil or water harboring the hardy bacteria.

Hardy and colleagues at Stanford and Xenogen Corp. used a unique imaging technique to track the ebb and flow of Listeria infection in live mice. They tagged the bacteria with a luminescent molecule that can be non-invasively detected in living tissue, and then analyzed when and where the lunch-meat lurkers popped up. The ability to visualize the whole animal enabled them to identify the gall bladder as an important bacterial bunker - something they hadn’t expected and wouldn’t have found without using whole-body imaging.

"We were somewhat surprised to see the intensity of the signal in the gall bladder," Contag said. "In contrast to traditional methods of tracking infection, imaging let us follow the same animal day after day and look at the whole body at once, picking up more subtle nuances of infection."

Another surprise was how the bacteria were dividing in the gall bladder. Normally Listeria tries to evade the immune system by replicating inside the host’s own cells. But in the gall bladder, which serves as a way station for bile in between meals, the bacteria go it alone, reproducing in long extracellular chains that can cram the organ without causing symptoms in the animal.

"The most striking thing about all of this research is that we get tremendous amounts of growth without disease," said Hardy. "This represents a new face of the pathogen - growing in a different place and a different way." Intriguingly, the only other bacteria shown to hunker down in the gall bladder of an unbothered host is the one that causes typhoid fever, which is spread between people via contaminated food.

The researchers speculate that because it’s difficult for immune cells and antibiotics to enter the gall bladder, the organ is a safe zone for bacteria. After escaping detection, the bacteria are released with the flood of bile that enters the small intestine following a meal. Poor hygiene can spread the bacteria excreted in stool to the hands and then to food, leaving it poised to infect the next victim.

Listeria’s predilection for such exotic digs appears to be a result of fortuitous genetics; the bacteria express at least one gene that enables them to break down salt in the bile and possibly make the surroundings more hospitable.

"The bacteria have obviously maintained a set of genes that allows them to grow there," said Contag. "Since the bacterium was often found in the gall bladder in our study, it implies that they use the genes routinely." The researchers are now planning to investigate whether various Listeria mutants replicate in the gall bladder and to look for possible molecular targets for therapeutic intervention.

"We’d like to know how Listeria mutants that cannot replicate inside host cells gain access to the gall bladder," said second author Kevin Francis, PhD, director of technical applications for Xenogen. "This mechanism could be targeted to prevent the carrier state." Francis engineered the bioluminescent Listeria used in the study.

In vivo bioluminescent imaging was developed at Stanford in the Contag laboratory and has been licensed by Xenogen. Contag chairs the company’s scientific advisory board.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Krista Conger (650) 725-5371 (kristac@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Krista Conger | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>