Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cool brain opens stroke treatment window, say Stanford researchers

06.02.2004


Treating stroke is all a matter of timing: therapy delivered too late misses the critical window when neurons can still be saved. A report by Stanford University School of Medicine researchers shows that cooling the brain can lengthen the therapeutic window, giving doctors more time to protect brain cells.



The idea of cooling the brain isn’t new. Study leader Gary Steinberg, MD, PhD, the Lacroute-Hearst Professor of Neurosurgery and the Neurosciences, said he started cooling brains during brain surgery in 1991. For some types of surgeries, a brain that’s 4 degrees cooler than normal seems to resist injury better than a brain at normal body temperature.

In collaboration with Robert Sapolsky, PhD, the John A. and Cynthia Fry Gunn Professor of Biological Sciences, Steinberg has combined this cooling treatment with a form of gene therapy. Together the approaches work better than either technique on its own to save neurons after a stroke. What’s more, cooling the brains in rats slowed the neurons’ demise, giving researchers more time to administer additional treatment.


"We think this work has considerable potential," Steinberg said. The study is published in the February issue of the journal Stroke.

In past experiments, Steinberg’s and Sapolsky’s groups have shown that giving rats a form of gene therapy within 90 minutes after a stroke can help brain cells survive. The gene they insert, called Bcl-2, prevents cells from following a ritualized form of cell death. Proteins involved in this fatal pathway usually skyrocket after a stroke and brain cells die en masse.

Although the gene therapy’s success was good news, giving Bcl-2 after the initial 90-minute window had no effect - the cell-death proteins had already been released and the cells were beyond recovery. However, Steinberg said it is rare for stroke patients to receive treatment within that narrow 90-minute time frame.

Steinberg and his colleagues thought that chilling the brains might slow the release of cell-death molecules, allowing a longer window in which Bcl-2 treatment could be effective.

In the study, researchers cut off the blood supply to a portion of the brain in rats, simulating a stroke. Some rats recovered at the normal body temperature while others had their temperature lowered by 4 degrees until the researchers gave Bcl-2 gene therapy five hours later.

The number of surviving neurons was the same in all mice that had no gene therapy and in mice that had gene therapy without cooling. However, the mice in which the lowered body temperature was followed by gene therapy had two to three times more neurons surviving two days after the stroke.

Steinberg said if this finding holds true in humans then chilling the brain may give doctors more time to treat stroke patients. This longer opening could make the difference in enabling patients to retain such functions as control of their limbs or the ability to speak normally after a stroke.

Steinberg added that for now, Bcl-2 gene therapy isn’t an option for humans because the method used to insert the gene hasn’t been perfected. Rather, he said researchers can begin looking at other treatments that may be possible to complete within the longer therapeutic window. These treatments include one of a wide range of proteins that, like Bcl-2, thwart the cell-suicide pathway and keep cells alive.

"We’re also pursuing hypothermia with other genes to extend the therapeutic window," Steinberg said.

Heng Zhao, PhD, research associate, was lead author of the study. Midori Yenari, MD, associate professor of neurosurgery and of neurology and neurological sciences, also contributed to the work.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

PRINT MEDIA CONTACT: Amy Adams at (650) 723-3900 (amyadams@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Health and Medicine:

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

nachricht Pain: Perception and motor impulses arise in the brain independently of one another
12.12.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>