Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of MN research indicates why radiation therapy reduces bone cancer pain

02.02.2004


New findings may pave way for improved pain relief methods



Although physicians administer radiation therapy to relieve bone cancer pain in more than 100,000 patients each year in the United States, little is known about why the treatment works. Using an experimental radiation model, University of Minnesota Cancer Center researchers and colleagues have determined that radiation treatment may relieve pain by reducing bone tumor size and decreasing progression of cancer-induced bone destruction. The findings appear in February issue of the journal Radiation Research.

"Perhaps the greatest obstacle to improving pain relief following radiation of bone cancer is our limited knowledge regarding mechanisms responsible for decreasing the pain," said lead investigator Denis Clohisy, M.D., professor of orthopedic surgery in the Medical School and Cancer Center member. "Future use of the experimental system described in this research should help accelerate the pace of discovery around these mechanisms and help efforts to reduce the burden of pain suffered by bone cancer patients."


Researchers in this investigation created an experimental model that limited radiation to the site of cancer in mice and then used an established bone pain model, imaging techniques, and histologic evaluations to understand the effects of radiation.

The research demonstrated that a localized, single radiation dose decreased painful behavior and increased limb use, which was associated with a decrease in bone destruction and tumor burden. Treated mice demonstrated greater pain relief and had significantly less bone destruction and tumor burden than untreated mice. Recent studies have demonstrated that tumor burden and bone destruction each correlate with behavioral and neurochemical measures of pain.

Co-authors of this study are Bruce J. Gerbi, Ph.D., Parham Alaei, Ph.D., Patrick W. Mantyh, J.D., Ph.D., Michael Goblirsch, B.A., Wendy E. Mathews, B.S., and Christine Lynch, B.S.


The Cancer Center at the University of Minnesota is a National Cancer Institute-designated Comprehensive Cancer Center. Awarded more than $80 million in peer-reviewed grants during fiscal year 2003, the Cancer Center conducts cancer research that advances knowledge and enhances care. The center also engages community outreach and public education efforts addressing cancer. To learn more about cancer, visit the University of Minnesota Cancer Center Web site at http://www.cancer.umn.edu. For cancer questions, call the Cancer Center information line at 1-888-CANCER MN (1-888-226-2376) or 612-624-2620 in the metro area.

Molly Portz | EurekAlert!
Further information:
http://www.umn.edu/
http://www.cancer.umn.edu

More articles from Health and Medicine:

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>