Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental treatment yields new hope for children battling cerebral palsy

02.02.2004


Children with cerebral palsy who are severely impaired showed significant improvement in their motor skills using a new experimental physical therapy regimen, said researchers at Georgetown University and University of Alabama at Birmingham. The study – the first randomized, controlled trial of its kind conducted on children – appears in the February 2 issue of the journal Pediatrics.



All treated children in this study outperformed the children in conventional therapy across all measures of success, including how well they could move their arms post-therapy and their ability to do new tasks during research and at home with their families.

Children with cerebral palsy (CP) exhibit an inability to control their muscles as a result of damage to the region of the brain that controls muscle tone. The result often renders children unable to perform seemingly simple everyday tasks such as picking up a cup, eating finger foods or reaching to be picked up by a parent. Conventional physical therapy interventions have done little to improve motor skills or overall quality of life for children, which led researchers to explore other more intensive and innovative therapies.


Georgetown professor Sharon Landesman Ramey while working at the University of Alabama (UAB), in collaboration with Drs. Stephanie DeLuca and Karen Echols, borrowed from the world of adult stroke recovery treatments to try "constraint-induced movement therapy" on children with CP. This therapy was pioneered by Dr. Edward Taub at UAB, and has shown significant results in helping adults recover motor function post-stroke.

"The pediatric version of constraint-induced movement therapy we created has produced very large and lasting benefits for these children," said Ramey, professor at Georgetown’s School of Nursing & Health Studies and Co-director of Georgetown’s Center for Health and Education. "Every child in the study responded to this treatment. Rather than languishing in less effective regimens, children and their families now have hope for drastic improvements. We are understandably thrilled by these results, and look forward to testing them with broader groups of children with cerebral palsy."

Working with 18 children with CP, researchers placed the children’s stronger arms in a cast, which the children wore for 3 weeks, and then gave them six hours of therapy per day for 21 consecutive days to retrain the weaker arm and hand to move. The control group received conventional physical therapy, which is much less time intensive and involved no casting of one side. Across all measures, the constraint induced therapy produced enhanced motor function in the weaker arm; six months after therapy the children still had sustained benefits.

CP affects at least two in 1,000 children in the United States, and approximately one million children under the age of 21 in the industrialized world. According to The Centers for Disease Control and Prevention, there are many possible causes of the brain damage that results in CP, including genetic conditions and problems with blood supply to the brain during pregnancy. Other causes of CP arise after the brain has developed. These causes can occur during later pregnancy, delivery, or the first years of the child’s life. They include bacterial meningitis and other infections, bleeding in the brain, lack of oxygen, severe jaundice and head injury.

The CDC’s website states that the lifetime costs for a person with were about $800,000 (in year 2000 dollars), not including expenses such as caregiver costs for children or adults with cerebral palsy that might have to be borne by families.

"CP can devastate children and their families emotionally and financially," said Ramey. "If our research leads to improved and accelerated treatment for CP, resulting in real shifts in quality of life for children, we will indeed have something to be very proud of."


This research was supported by the National and Child Health and Human Development of the National Institutes of Health, Alabama Health Services Foundation, the Civitan International Foundation, the Administration on Developmental Disabilities, and the Maternal and Child Health Bureau.

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis--or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Cancer Center. For more, please visit www.georgetown.edu/gumc.

Georgetown University’s School of Nursing was founded in 1903. The Health Studies track was added in 1998 to reflect the changing face of 21st-century health care. The School of Nursing & Health Studies seeks to improve the health and well-being of all people through innovative education in the fields of nursing and health studies. For more information, visit http://snhs.georgetown.edu.

Lindsey Spindle | EurekAlert!
Further information:
http://gumc.georgetown.edu/
http://snhs.georgetown.edu

More articles from Health and Medicine:

nachricht Study shows novel protein plays role in bacterial vaginosis
13.12.2019 | University of Arizona Health Sciences

nachricht Illinois team develops first of a kind in-vitro 3D neural tissue model
12.12.2019 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>