Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the cellular ’garbage disposal’ grinds to a halt to cause Batten disease

29.01.2004


Scientists have discovered just how a genetic defect disrupts the cellular "garbage disposal" of a cell, resulting in a horrific childhood disease that kills most patients before the age of 25.



For nine years researchers have known the precise genetic flaw that causes Batten disease. But understanding how a straightforward mistake in life’s blueprint translates to a disease that ravages roughly 1,000 children in the United States each year has been a challenge. Now, in a paper in the Dec. 23 issue of the Proceedings of the National Academy of Sciences, a team from the University of Rochester Medical Center lays out the sequence of biochemical steps that results in the disease.

The team led by David A. Pearce, Ph.D., of the Center for Aging and Developmental Biology found that the genetic defect is linked to a protein that regulates the amino acid arginine in and out of a yeast organelle called the vacuole. The vacuole in yeast is much like the lysosome in human cells, slicing and dicing up cellular waste and then disposing or recycling the material. In Batten disease and other lysosomal storage disorders, the lysosomes don’t work correctly and cells swell up with gunk that eventually kills them.


Pearce’s team found that the trouble with arginine levels is critical to throwing the pH levels of cells in lysosomes out of whack, affecting a range of processes and ultimately ruining a cell’s ability to get rid of its own waste.

"It’s a little bit like getting sugar in your gas tank," Pearce says. "Once you change the mix just a little, it has drastic repercussions throughout the system."

Children with Batten disease are born healthy, but often, around age 4 or 5, the first symptoms appear as a minor problem with a child’s eyesight. Subsequently the malfunctioning lysosomes result in the death of more and more brain cells, and patients are beset with a host of medical problems: frequent seizures, loss of the ability to speak or move, and mental retardation. Most patients die in their teens or 20s.

A biochemist who uses yeast to study basic biological processes, in the past few years Pearce’s laboratory has grown to more than a dozen scientists focusing on Batten disease. Based on his findings, a Rochester team hopes to conduct the first clinical trial in search of a treatment for the disease. Pearce, an assistant professor in the Department of Biochemistry and Biophysics, also serves as the scientific adviser for the Batten Disease Support and Research Foundation and meets children with the disease, and their families, on an ongoing basis.

"When I began this research, I had just become a parent, and I was horrified to find out that such a disease is out there," says Pearce. "It’s my goal to be able to offer these children and their families some relief from this terrible illness."

The work was funded by the National Institutes of Health and the Luke and Rachel Batten Foundation. Other authors of the PNAS paper include former graduate student Yoojin Kim, Ph.D., now at Oregon Health Sciences Center, and graduate student Denia Ramirez-Montealegre.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>