Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Identify Cell Defects that Limit Immune System’s Impact on Late-Stage Tumors

22.01.2004


Although vaccines developed to help the immune system fight tumors appear to have an impact against early-stage tumors, they have little if any success in slowing the growth of tumors in later stages. Now researchers writing in the Feb. 1, 2004 issue of The Journal of Immunology identify abnormalities in the immune system’s T cells, provide insight into their origin, and describe how these defects can be prevented and "repaired" in animal experiments.

"Conventional thinking and previous studies suggest that the tumor environment is responsible for immune dysfunction in cancer-fighting T lymphocytes that congregate at the site of a tumor. The major unresolved question is the origin and mechanism responsible for immune dysfunction in tumor-infiltrating T cells. We found that damaged T cells arose from a particular cell lineage, within a tumor environment that lacks factors promoting their survival," said Keith L. Black, MD, director of Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute, where the mouse studies were conducted. "Furthermore, we were able to influence the cells in a way that decreased the number of dysfunctional cells, a finding that we hope may eventually lead to more effective vaccine therapies against established tumors."

In a localized immune response, T cells are mobilized to attack cells that the immune system recognizes as invaders. Because specific lymphocytes recognize and attack specific immune threats, they are called "antigen-specific." In cancer vaccine experiments, such as those ongoing at the Institute to improve treatment for brain tumors, researchers seek to improve the immune response by helping cancer-fighting cells identify tumor cells as potential targets.



T cell activation is considered a major defense mechanism in the prevention of tumor formation, and in rodent studies T cell responses have been able to eradicate recently established tumors. In both humans and animals, however, T cell mobilization appears to have little effect when directed against advanced tumors.

While many types of T lymphocytes exist, differentiated by their molecular makeup and the roles they play, CD4 and CD8 cells are considered the "normal population" responding to threatening antigens. But in these studies, most T cells present within the tumors were "double-negative," expressing neither CD4 nor CD8, but instead exhibiting abnormal characteristics.

"While most studies assign T cell defectiveness and death to the tumor environment, we now know more about the kinds of T cells that are susceptible and how they become defective. This allowed us to target novel properties to prevent or reverse the defects," said Christopher J. Wheeler, PhD, research scientist and the paper’s senior author. "The T cell defects could be incurred independent of their reactivity to the tumor per se, and on a general level involved signals for survival."

T cells normally receive "survival" signals provided by signaling molecules or certain hormones. In the absence of these survival signals, the cells simply die by default.

"These signals are usually available in the body but they evidently are not available to T cells in tumors," said Dr. Wheeler. "We conducted an experiment to test this observation, adding back the molecules that can induce such signals, and we found a reduction in the abnormal T cells."

The recent research also provides new insight into another aspect of the relationship between tumors and defective T cells. Because those T cells responding to a tumor are believed to be specifically reactive to that tumor antigen, it has been assumed - perhaps incorrectly - that the T cell defects were in some way related to antigen-specificity and reactivity.

"We placed non-activated and non-tumor-specific T cells into tumors and found that they readily became defective. This runs counter to the predominant paradigm holding that defectiveness is related to antigen reactivity or specificity. At least experimentally, this is not the case. Of course, in a real tumor, most of the T cells that are present are going to be antigen-specific. Antigen-specificity allows T cells to infiltrate tumors, but this is not necessarily involved in their defectiveness," Dr. Wheeler said.

If the findings in this series of experiments are supported through additional studies and their implications in animals are consistent in humans, they may help researchers devise more effective approaches to immunotherapy. Theoretically, at least, the vaccine would "turn on" the immune system and focus it on the tumor while the promotion of survival signals into the tumor would "repair" defective T cells to help them stay alive to fight.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Citation: The Journal of Immunology, February 1, 2004: "Characterization of
Defective CD4-CD8- T cells in Murine Tumors Generated Independent of Antigen
Specificity."

Sandra Van | Cedars-Sinai Media Relations
Further information:
http://www.csmc.edu

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>