Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh imaging agent study suggests breakthrough in Alzheimer’s research

22.01.2004


Pittsburgh Compound B gives unique view of amyloid plaques in the living human brain



Scientists at the University of Pittsburgh School of Medicine in collaboration with researchers at Uppsala University, Sweden, have laid the groundwork for a new era in Alzheimer’s disease (AD) research by completing the first human study of a compound that, through positron emission tomography (PET), enables them to peer into the brains of people with the memory-stealing illness and see the telltale plaque deposits they believe are at the root of the disease.

Alzheimer’s is a debilitating brain disease that affects memory and cognitive function in approximately 4 million Americans today and, if unchecked, will strike as many as 14 million during the next 50 years. The distinguishing factor between AD and other dementias is the formation of a protein substance called beta-amyloid, or amyloid plaque, that is believed to contribute to the death of brain cells.


Results of the study were chosen for rapid publication online in the early view section of Annals of Neurology.

According to the researchers, creation of the compound, dubbed Pittsburgh Compound B (PIB), is a significant development that may provide long-sought answers to questions of how the disease begins and grows, as well as contribute to a better understanding of how effective new drug therapies are at preventing, delaying or treating AD.

"PIB has given us a new tool to view the amount of amyloid in the brains of living Alzheimer’s disease patients," said William E. Klunk, M.D., Ph.D., associate professor of psychiatry at the University of Pittsburgh School of Medicine and co-inventor of PIB. "Using PIB, we will likely be able to follow the progression of the disease and speed the development of promising new therapies aimed at halting the build-up of amyloid in the brain."

Alzheimer’s disease, like stroke, is a significant cause of dementia in people over the age of 65. But unlike stroke, which begins with a single event, there is no way for doctors to pinpoint when the brains of people with AD begin to change, and this lack of knowledge is a real detriment when it comes to creating and testing therapies to prevent the illness.

The plaque deposits form in areas of the brain where memory and cognitive functions are carried out, while leaving areas responsible for motor functions alone. This means a person with AD can be cognitively helpless while being physically robust.

Actual visual inspection of amyloid in the brain has been the only way to make a definitive diagnosis of AD, and previously could only be done at autopsy. With PIB, the distribution of amyloid in the brains of living patients obtained with PET imaging corresponded well to that seen by pathologists at autopsy, said Dr. Klunk.

"The study clearly demonstrates that we now have a tool to detect one of the hallmarks of Alzheimer’s disease in the brains of living patients. Until now, this could only be shown at autopsy or by brain biopsy. This is a significant advance for Alzheimer research, and we look forward to the discovery of many possible uses for it, including aiding in the development of new Alzheimer therapies and possibly assisting in identifying those at high risk for the disease," said William Thies, Ph.D., vice president of Medical and Scientific Affairs for the Alzheimer’s Association.

According to the researchers, future use of the compound in the diagnosis of AD is just one area likely to be influenced by the new PIB imaging technology.

"We’re excited by the future prospects for Pittsburgh Compound B," said Chester A. Mathis, Ph.D., professor of radiology at the University of Pittsburgh School of Medicine and co-inventor of PIB. "The ability to detect and quantify amyloid in the brain has the potential to impact several areas of Alzheimer’s research, including the assessment of anti-amyloid treatments under development by many major pharmaceutical companies. PIB may allow us to study the very roots of AD by assessing the extent of amyloid deposition in people years before AD symptoms appear."

"For example," added Dr. Klunk, "we will be able to study families with a genetic makeup that leads to AD in half the family members at an early age, often in their 40’s. Looking at these at-risk, presymptomatic subjects will show us if the plaques responsible for destroying the brain’s ability to think and remember are present years before the first symptoms appear, or if they accumulate over a relatively short time period."

Knowing when the plaques begin to form is a key step in researching drugs that could have a real impact on the disease, said Dr. Klunk. "We will not only find out when plaques begin to form, we will be able to see directly if a medication is preventing or reversing plaque formation over the long term."

While the trial looked at a relatively small sample, 16 patients diagnosed with probable AD and nine control subjects, the results were highly significant. PET images showing PIB retention in the AD patients revealed PIB "stuck" to amyloid in areas of the brain known to contain these plaques, but not in areas of the brain where it is known that AD patients have low concentrations of plaques. PIB was not retained in the brains of eight of the nine control subjects, raising the possibility that the remaining control was starting to develop amyloid before any symptoms of dementia were apparent.

"These results are a very strong indicator of PIB’s usefulness in providing quantitative information on amyloid deposits in the living brain," said Dr. Mathis.

In addition to Drs. Klunk and Mathis, the team included researchers from Uppsala University and PET Centre/Uppsala Imanet AB in Uppsala, Sweden; and the Karolinska Institute and Huddinge University, Stockholm, Sweden.


The study was supported by grants from the Alzheimer’s Association, the National Institute on Aging, the Swedish Medical Research Council and the Stohnes Foundation. Brain tissue was provided through the University of Pittsburgh Alzheimer Disease Research Center Brain Bank.

CONTACT:
Craig Dunhoff
Jane Duffield
PHONE: 412-647-3555
FAX: 412-624-3184
E-MAIL:
DunhoffCC@upmc.edu
DuffieldDJ@upmc.edu

Craig Dunhoff | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Hepatitis: liver failure attributable to compromised blood supply
19.12.2018 | Technische Universität München

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>