Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cancer gene causing tumours by a ‘double-whammy’ mechanism also reveals the key to a cure

21.01.2004


Scientists at the Babraham Institute have discovered that a tiny change in a protein involved in cell survival is responsible for abnormal cell activity in the early stages of cancer.



The protein, known as Bcl-xL, normally protects cells from dying; and when the DNA in cells becomes damaged, Bcl-xL is modified so that it no longer keeps the cells alive. Hence, the cells with damaged DNA usually die, so preventing them from becoming cancer cells.

However, in the presence of a particular cancer gene, the usual modification of Bcl-xL following DNA damage doesn’t occur, so cells with DNA damage are kept alive, resulting in cancer.


The discovery, described in an article in Cancer Cell published today (19 January), was made by Dr Rui Zhao, working in Dr Denis Alexander’s research group at the Babraham Institute, Cambridge. Sharp-eyed Dr Zhao noticed that the tiny change in Bcl-xL that normally occurs after exposing cells to radiation no longer happened when the particular cancer gene was present. “The cancer model that we’re working on is T cell lymphomas”, Dr Alexander explains, “but it’s quite likely that this mechanism could be relevant to other types of cancer as well - 24,500 people in Britain every year are diagnosed with a cancer of the blood”.

Intriguingly, the cancer gene being studied at the Babraham Institute (a hyperactive tyrosine kinase) acts by a ‘double-whammy’ mechanism. In the first instance, it inhibits the rapid repair of DNA damage that often occurs as cells divide. Therefore DNA damage quickly begins to accumulate in cells containing the cancer gene. Additionally, the cancer gene prevents the cells with damaged DNA from being eliminated, so leading to cancer. “It is quite likely”, says Dr. Alexander, “that if only one of these mechanisms were taking place, there would be no cancer. It’s when both occur simultaneously, the ‘double-whammy’, that the catastrophe happens”.

Understanding how the cancer gets going in the first place might eventually lead to novel cancer therapies. Dr. Alexander’s group has also shown that the critical modification of Bcl-xL, prevented by the cancer gene even before the cancer gets started, also remains blocked in tumours even when they’ve been exposed to reagents used in chemotherapy. “If we could find a way of averting this blockade”, Dr. Alexander comments, “then the power of Bcl-xL in keeping tumour cells alive would be destroyed, and the tumour would either spontaneously die or would at least become more sensitive to chemotherapy or radiotherapy”.

“We are delighted to see such breakthroughs in cancer research”, the Director Dr. Richard Dyer commented, “as this highlights the commitment of the Institute to investigate the basic biological mechanisms that underlie disease”.

Emma Southern | alfa
Further information:
http://www.babraham.ac.uk/news_events/index.htm

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>