A cancer gene causing tumours by a ‘double-whammy’ mechanism also reveals the key to a cure

Scientists at the Babraham Institute have discovered that a tiny change in a protein involved in cell survival is responsible for abnormal cell activity in the early stages of cancer.

The protein, known as Bcl-xL, normally protects cells from dying; and when the DNA in cells becomes damaged, Bcl-xL is modified so that it no longer keeps the cells alive. Hence, the cells with damaged DNA usually die, so preventing them from becoming cancer cells.

However, in the presence of a particular cancer gene, the usual modification of Bcl-xL following DNA damage doesn’t occur, so cells with DNA damage are kept alive, resulting in cancer.

The discovery, described in an article in Cancer Cell published today (19 January), was made by Dr Rui Zhao, working in Dr Denis Alexander’s research group at the Babraham Institute, Cambridge. Sharp-eyed Dr Zhao noticed that the tiny change in Bcl-xL that normally occurs after exposing cells to radiation no longer happened when the particular cancer gene was present. “The cancer model that we’re working on is T cell lymphomas”, Dr Alexander explains, “but it’s quite likely that this mechanism could be relevant to other types of cancer as well – 24,500 people in Britain every year are diagnosed with a cancer of the blood”.

Intriguingly, the cancer gene being studied at the Babraham Institute (a hyperactive tyrosine kinase) acts by a ‘double-whammy’ mechanism. In the first instance, it inhibits the rapid repair of DNA damage that often occurs as cells divide. Therefore DNA damage quickly begins to accumulate in cells containing the cancer gene. Additionally, the cancer gene prevents the cells with damaged DNA from being eliminated, so leading to cancer. “It is quite likely”, says Dr. Alexander, “that if only one of these mechanisms were taking place, there would be no cancer. It’s when both occur simultaneously, the ‘double-whammy’, that the catastrophe happens”.

Understanding how the cancer gets going in the first place might eventually lead to novel cancer therapies. Dr. Alexander’s group has also shown that the critical modification of Bcl-xL, prevented by the cancer gene even before the cancer gets started, also remains blocked in tumours even when they’ve been exposed to reagents used in chemotherapy. “If we could find a way of averting this blockade”, Dr. Alexander comments, “then the power of Bcl-xL in keeping tumour cells alive would be destroyed, and the tumour would either spontaneously die or would at least become more sensitive to chemotherapy or radiotherapy”.

“We are delighted to see such breakthroughs in cancer research”, the Director Dr. Richard Dyer commented, “as this highlights the commitment of the Institute to investigate the basic biological mechanisms that underlie disease”.

Media Contact

Emma Southern alfa

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors