Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fat cells fight disease, Purdue University researchers find

21.01.2004


Fat cells, commonly blamed for a number of diseases, also may aid in the body’s defense against illnesses such as diabetes and cancer, according to Purdue University researchers.


Purdue researchers have determined that fat cells in humans defend against biochemical processes involved in illnesses such as diabetes and cancer. The research team is headed by Michael Spurlock (left), professor of animal sciences, and Kolapo Ajuwon, a doctoral student. (Purdue Agricultural Communications photo/Tom Campbell)



Rather than contributing to disease, fat cells, or adipocytes (pronounced ah-dip-poe-sights), normally function as part of the immune system and help control lipid accumulation, so they actually may benefit human health, said Michael Spurlock, animal sciences professor.

"Adipocytes can be functional and beneficial without creating obesity," Spurlock said. "The key is that we want plenty of adipocytes to meet whatever immunological and endocrinological needs they fulfill, but we don’t want them to overaccumulate lipid."


In the January issue of The American Journal of Physiology, Spurlock and Kolapo Ajuwon, both of the Department of Animal Sciences and the Comparative Medicine Program, report that pig fat cells respond to infections by producing hormone-like proteins that regulate certain aspects of the body’s immune response.

"This is additional evidence that fat cells behave in many ways as immune cells," Spurlock said. "It also is the first evidence that adipocyte cells respond directly to bacterial toxins like classical immune cells."

To produce this infection-fighting response, Ajuwon, a doctoral student, performed experiments exposing fat cells to interferon-gamma, a small protein produced by infection-fighting T-cells. This caused the adipocytes to produce hormone-like proteins, called cytokines.

"Our research documents a pathway by which the adipocytes participate in the immune response," Spurlock said. "We have very clearly shown that interferon-gamma is increasing expression of cytokines in pig fat cells."

In another part of the study, the researchers found that a molecule, or ligand, binds to molecules on the outside of pig fat cells incubated in a laboratory dish. In this case the ligand is an inflammatory molecule called LPS. This binding with the receptor molecule on the pig fat cell, like a key in a lock, signals fat cells to produce more of another hormone-like cytokine.

The researchers believe that this is similar to what happens in humans since some pig breeds show marked similarity in cardiovascular disease, hyperglycemia and insulin resistance, Spurlock said. The study’s findings that the LPS ligand and interferon-gamma regulate production of cytokines that impact both energy metabolism and immune function are significant in studying human diseases, including cancer and diabetes.

The factor in the fat tissue that is linked to diseases is the amount of lipid, also known as fatty acid or tricylglycerol, in the adipocytes, he said. As adipocytes accumulate excess lipid, their normal function is distorted and they produce too much of some biochemicals and not enough of others. These abnormalities can culminate in disease.

"For a long time, we have looked for the link between the immune system, obesity and insulin resistance," Spurlock said. "The fact that fat cells actually promote or secrete factors, such as the cytokine interleukin-6, may be fundamentally linked to insulin resistance in diabetes. This makes adipocytes very important cells."

People with Type II diabetes produce insulin in their pancreas, but the insulin can’t control their glucose levels. Adipocytes normally produce factors that promote insulin regulation of glucose levels, but these factors don’t function properly when obesity is involved.

Spurlock and his research team now want to determine other factors, such as certain classes of fatty acids, that will activate or suppress the LPS receptor.

"We know there are non-infectious ligands that activate the receptor, so we want to know what they are," he said. "If we can discover these regulators, then we might be able to find a way to manipulate the receptors and immune pathways to regulate the body’s energy metabolism and apply that to diabetes and cancer."

The other researchers involved in the study are doctoral student Sheila Jacobi and research associate Joanne Kuske, both of the Purdue Department of Animal Sciences and the Comparative Medicine Program. The program is a collaboration of Purdue’s Department of Animal Sciences, School of Veterinary Medicine and Indiana University School of Medicine with initial funding from the Indiana 21st Century Research and Technology Fund.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Michael Spurlock, (765) 494-4820, spurloc0@purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040120.Spurlock.fatcells.html

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>