Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create chip that detects viruses faster, better and cheaper than ever before

20.01.2004


A new silicon chip that harnesses emerging technology at the nano scale will allow the detection of viruses faster, and more accurately, than ever before. One of the applications of this new technique will help save thousands of lives in patients undergoing heart transplants; by enabling doctors to detect rapidly whether a donor heart is infected or not. The scientists announced their discovery today in the Institute of Physics journal Nanotechnology.



The device, called the “ViriChip” was developed by a team led by Dr Saju Nettikadan from BioForce Nanosciences, in collaboration with Des Moines University, both in the USA.

The ViriChip is a small silicon chip about a quarter of an inch across (6mm) which has tiny droplets of antibodies printed on the surface. A single ViriChip can be printed with hundreds of different antibodies. These antibodies act as landing pads for viruses, which attach themselves selectively to certain antibodies. Once the viruses have landed on a particular droplet, they can be detected using an atomic force microscope (AFM). The AFM is a small and simple machine that uses a tiny “finger” to feel bumps on the surface of the chip at the nanometer scale. The AFM method is fast, very sensitive (it can “see” individual viruses) and it does not destroy the viruses so they can be further analyzed e.g. by cell culture and other methods.


Nettikadan’s team showed that this technique worked by detecting six different strains of a virus called coxsackievirus B. Coxsackievirus B causes symptoms ranging from mild cold to death, and is one of the key factors causing the failure of heart transplants. The ability to detect coxsackievirus B could save thousands of lives by allowing a physician rapidly to determine if a donor heart is infected.

Dr Eric Henderson, founder and Chief Scientist at BioForce Nanosciences said: “This is the first time scientists have been able to routinely apply droplets of an antibody on the micron to nanometer scale to a surface of a material like a silicon chip. In principle you can fit thousands of different antibodies on one chip and use it to test for thousands of different viral infections simultaneously, using just one sample from a patient. This means patients won’t have to provide large blood samples, just a single drop will be sufficient. It also means the results will come back in record time and further studies can be carried out on the unperturbed sample using more conventional, if slower, methods. The technique is currently being used by researchers and we hope it will be available for doctors and hospital pathology labs in the next two years.”

David Reid | alfa
Further information:
http://www.iop.org/EJ/abstract/0957-4484/15/3/027

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>